首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variants in the chromosomal region 10q26 are strongly associated with an increased risk for age-related macular degeneration (AMD). Two potential AMD genes are located in this region: ARMS2 and HTRA1 (high-temperature requirement A1). Previous studies have suggested that polymorphisms in the promotor region of HTRA1 result in overexpression of HTRA1 protein. This study investigated the role of HTRA1 overexpression in the pathogenesis of AMD. Transgenic Htra1 mice overexpressing the murine protein in the retinal pigment epithelium (RPE) layer of the retina were generated and characterized by transmission electron microscopy, immunofluorescence staining and Western Blot analysis. The elastic layer of Bruch's membrane (BM) in the Htra1 transgenic mice was fragmented and less continuous than in wild type (WT) controls. Recombinant HTRA1 lacking the N-terminal domain cleaved various extracellular matrix (ECM) proteins. Subsequent Western Blot analysis revealed an overexpression of fibronectin fragments and a reduction of fibulin 5 and tropoelastin in the RPE/choroid layer in transgenic mice compared to WT. Fibulin 5 is essential for elastogenesis by promoting elastic fiber assembly and maturation. Taken together, our data implicate that HTRA1 overexpression leads to an altered elastogenesis in BM through fibulin 5 cleavage. It highlights the importance of ECM related proteins in the development of AMD and links HTRA1 to other AMD risk genes such as fibulin 5, fibulin 6, ARMS2 and TIMP3.  相似文献   

2.
Genome-wide association study (GWAS) has identified genetic variants in the promoter region of the high temperature requirement factor A1 (HTRA1) gene associated with age-related macular degeneration (AMD). As a secreted serine protease, HTRA1 has been reported to interact with members of the transforming growth factor-β (TGF-β) family and regulate their signaling pathways. Growth differentiation factor 6 (GDF6), a member of the TGF-β family, is involved in ectoderm patterning and eye development. Mutations in GDF6 have been associated with abnormal eye development that may result in microphthalmia and anophthalmia. In this report, we identified a single nucleotide polymorphism (SNP) rs6982567 A/G near the GDF6 gene that is significantly associated with AMD (p value = 3.54 × 10(-8)). We demonstrated that the GDF6 AMD risk allele (rs6982567 A) is associated with decreased expression of the GDF6 and increased expression of HTRA1. Similarly, the HTRA1 AMD risk allele (rs10490924 T) is associated with decreased GDF6 and increased HTRA1 expression. We observed decreased vascular development in the retina and significant up-regulation of GDF6 gene in the RPE layer, retinal and brain tissues in HTRA1 knock-out (htra1(-/-)) mice as compared with the wild-type counterparts. Furthermore, we showed enhanced SMAD signaling in htra1(-/-) mice. Our data suggests a critical role of HTRA1 in the regulation of angiogenesis via TGF-β signaling and identified GDF6 as a novel disease gene for AMD.  相似文献   

3.
Age-related macular degeneration (AMD) leads to dysfunction and degeneration of retinal photoreceptor cells. This disease is characterized, in part, by the development of extracellular deposits called drusen. The presence of drusen is correlated with the development of AMD, although little is known about drusen composition or biogenesis. Drusen form within Bruch's membrane, a stratified extracellular matrix situated between the retinal pigmented epithelium and choriocapillaris. Because of this association, we sought to determine whether drusen contain known extracellular matrix constituents. Antibodies directed against a battery of extracellular matrix molecules were screened on drusen-containing sections from human donor eyes, including donors with clinically documented AMD. Antibodies directed against vitronectin, a plasma protein and extracellular matrix component, exhibit intense and consistent reactivity with drusen; antibodies to the conformationally distinct, heparin binding form of human vitronectin are similarly immunoreactive. No differences in vitronectin immunoreactivity between hard and soft drusen, or between macular and extramacular regions, have been observed. RT-PCR analyses revealed that vitronectin mRNA is expressed in the retinal pigmented epithelium (RPE)-choroidal complex and cultured RPE cells. These data document that vitronectin is a major constituent of human ocular drusen and that vitronectin mRNA is synthesized locally. Based on these data, we propose that vitronectin may participate in the pathogenesis of AMD.  相似文献   

4.
Age-related macular degeneration (AMD) is characterized by progressive loss of central vision, which is attributed to abnormal accumulation of macular deposits called "drusen" at the interface between the basal surface of the retinal pigment epithelium (RPE) and Bruch's membrane. In the most severe cases, drusen deposits are accompanied by the growth of new blood vessels that breach the RPE layer and invade photoreceptors. In this study, we hypothesized that RPE secreted proteins are responsible for drusen formation and choroidal neovascularization. We used stable isotope labeling by amino acids in cell culture (SILAC) in combination with LC-MS/MS analysis and ZoomQuant quantification to assess differential protein secretion by RPE cell cultures prepared from human autopsy eyes of AMD donors (diagnosed by histological examinations of the macula and genotyped for the Y402H-complement factor H variant) and age-matched healthy control donors. In general, RPE cells were found to secrete a variety of extracellular matrix proteins, complement factors, and protease inhibitors that have been reported to be major constituents of drusen (hallmark deposits in AMD). Interestingly, RPE cells from AMD donors secreted 2 to 3-fold more galectin 3 binding protein, fibronectin, clusterin, matrix metalloproteinase-2 and pigment epithelium derived factor than RPE cells from age-matched healthy donors. Conversely, secreted protein acidic and rich in cysteine (SPARC) was found to be down regulated by 2-fold in AMD RPE cells versus healthy RPE cells. Ingenuity pathway analysis grouped these differentially secreted proteins into two groups; those involved in tissue development and angiogenesis and those involved in complement regulation and protein aggregation such as clusterin. Overall, these data strongly suggest that RPE cells are involved in the biogenesis of drusen and the pathology of AMD.  相似文献   

5.
Late‐onset retinal degeneration (L‐ORD) is an autosomal dominant macular degeneration characterized by the formation of sub‐retinal pigment epithelium (RPE) deposits and neuroretinal atrophy. L‐ORD results from mutations in the C1q‐tumor necrosis factor‐5 protein (CTRP5), encoded by the CTRP5/C1QTNF5 gene. To understand the mechanism underlying L‐ORD pathology, we used a human cDNA library yeast two‐hybrid screen to identify interacting partners of CTRP5. Additionally, we analyzed the Bruch's membrane/choroid (BM‐Ch) from wild‐type (Wt), heterozygous S163R Ctrp5 mutation knock‐in (Ctrp5S163R/wt), and homozygous knock‐in (Ctrp5S163R/S163R) mice using mass spectrometry. Both approaches showed an association between CTRP5 and HTRA1 via its C‐terminal PDZ‐binding motif, stimulation of the HTRA1 protease activity by CTRP5, and CTRP5 serving as an HTRA1 substrate. The S163R‐CTRP5 protein also binds to HTRA1 but is resistant to HTRA1‐mediated cleavage. Immunohistochemistry and proteomic analysis showed significant accumulation of CTRP5 and HTRA1 in BM‐Ch of Ctrp5S163R/S163R and Ctrp5S163R/wt mice compared with Wt. Additional extracellular matrix (ECM) components that are HTRA1 substrates also accumulated in these mice. These results implicate HTRA1 and its interaction with CTRP5 in L‐ORD pathology.  相似文献   

6.
Age-related macular degeneration (AMD) is characterized by the formation of drusen, extracellular deposits associated with atrophy of the retinal pigmented epithelium (RPE), disturbance of the transepithelial barrier and photoreceptor death. Amyloid-β (Aβ) is present in drusen but its role during AMD remains unknown. This study investigated the in vitro and in vivo effects of the oligomeric form of Aβ(1-42) – OAβ(1-42) – on RPE and found that it reduced mitochondrial redox potential and increased the production of reactive oxygen species, but did not induce apoptosis in RPE cell cultures. It also disorganized the actin cytoskeleton and halved occludin expression, markedly decreasing attachment capacity and abolishing the selectivity of RPE cell transepithelial permeability. Antioxidant pretreatment partially reversed the effects of OAβ(1-42) on mitochondrial redox potential and transepithelial permeability. Subretinally injected OAβ(1-42) induced pigmentation loss and RPE hypertrophy but not RPE cell apoptosis in C57BL/6 J mice. Rapid OAβ(1-42)-induced disorganization of cytoskeletal actin filaments was accompanied by decreased RPE expression of the tight junction proteins occludin and zonula occludens-1 and of the visual cycle proteins cellular retinaldehyde-binding protein and RPE65. The number of photoreceptors decreased by half within a few days. Our study pinpoints the role of Aβ in RPE alterations and dysfunctions leading to retinal degeneration and suggests that targeting Aβ may help develop selective methods for treating diseases involving retinal degeneration, such as AMD.  相似文献   

7.
《Autophagy》2013,9(4):563-564
Age-related macular degeneration (AMD) is the leading cause of loss of vision in developed countries. AMD is characterized by a progressive degeneration of the macula of the retina, usually bilateral, leading to a severe decrease in central vision. An early sign of AMD is the appearance of drusen, which are extracellular deposits that accumulate on Bruch’s membrane below the retinal pigment epithelium (RPE). Drusen are a risk factor for developing AMD. Some of the protein components of drusen are known, yet we know little about the processes that lead to formation of drusen. We have previously reported increased mitochondrial DNA (mtDNA) damage and decreased DNA repair enzyme capabilities in the rodent RPE/choroid with age. In this study, we used in vitro modeling of increased mtDNA damage. Under conditions of increased mtDNA damage, autophagy markers and exosome markers were upregulated. In addition, we found autophagy markers and exosome markers in the region of Bruch’s membrane in the retinas of old mice. Furthermore, we found that drusen in AMD donor eyes contain markers for autophagy and for exosomes. We speculate that increased autophagy and the release of intracellular proteins via exosomes by the aged RPE may contribute to the formation of drusen. Molecular and cellular changes in the old RPE may underlie susceptibility to genetic mutations that are found in AMD patients.  相似文献   

8.
Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD.  相似文献   

9.

Background

Age-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly population. Debris (termed drusen) below the retinal pigment epithelium (RPE) have been recognized as a risk factor for dry AMD and its progression to wet AMD, which is characterized by choroidal neovascularization (CNV). The underlying mechanism of how drusen might elicit CNV remains undefined. Cigarette smoking, oxidative damage to the RPE and inflammation are postulated to be involved in the pathophysiology of the disease. To better understand the cellular mechanism(s) linking oxidative stress and inflammation to AMD, we examined the expression of pro-inflammatory monocyte chemoattractant protein-1 (MCP-1), pro-angiogenic vascular endothelial growth factor (VEGF) and anti-angiogenic pigment epithelial derived factor (PEDF) in RPE from smoker patients with AMD. We also evaluated the effects of hydroquinone (HQ), a major pro-oxidant in cigarette smoke on MCP-1, VEGF and PEDF expression in cultured ARPE-19 cells and RPE/choroids from C57BL/6 mice.

Principal Findings

MCP-1, VEGF and PEDF expression was examined by real-time PCR, Western blot, and ELISA. Low levels of MCP-1 protein were detected in RPE from AMD smoker patients relative to controls. Both MCP-1 mRNA and protein were downregulated in ARPE-19 cells and RPE/choroids from C57BL/6 mice after 5 days and 3 weeks of exposure to HQ-induced oxidative injury. VEGF protein expression was increased and PEDF protein expression was decreased in RPE from smoker patients with AMD versus controls resulting in increased VEGF/PEDF ratio. Treatment with HQ for 5 days and 3 weeks increased the VEGF/PEDF ratio in vitro and in vivo.

Conclusion

We propose that impaired RPE-derived MCP-1-mediated scavenging macrophages recruitment and phagocytosis might lead to incomplete clearance of proinflammatory debris and infiltration of proangiogenic macrophages which along with increased VEGF/PEDF ratio favoring angiogenesis might promote drusen accumulation and progression to CNV in smoker patients with dry AMD.  相似文献   

10.
One of the earliest signs of age‐related macular degeneration (AMD) is the formation of drusen which are extracellular deposits beneath the retinal pigmented epithelium (RPE). To investigate the relationship between drusen and AMD, we focused on amyloid β (Aβ), a major component of drusen and also of senile plaques in the brain of Alzheimer's patients. We previously reported that Aβ was accumulated in drusen‐like structure in senescent neprilysin gene‐disrupted mice. The purpose of this study was to investigate the influence of Aβ on factor B, the main activator of the complement alternative pathway. The results showed that Aβ did not directly modulate factor B expression in RPE cells, but increased the production of monocyte chemoattractant protein‐1 (MCP‐1). Aβ also increased the production of IL‐1β and TNF‐α in macrophages/microglia, and exposure of RPE cells to IL‐1β and TNF‐α significantly up‐regulated factor B. Co‐cultures of RPE cells and macrophages/microglia in the presence of Aβ significantly increased the expression of factor B in RPE. These findings indicate that cytokines produced by macrophages/microglia that were recruited by MCP‐1 produced in RPE cells stimulated by Aβ up‐regulate factor B in RPE cells. Thus, a combined mechanism exists for Aβ‐induced for the activation of the complement alternative pathway in the subretinal space; cytokine‐induced up‐regulation of activator factor B and dysfunction of the inhibitor factor I by direct binding to Aβ as suggested in our earlier study. J. Cell. Physiol. 220: 119–128, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Age-related macular degeneration (AMD) is an eye disease underlined by the degradation of retinal pigment epithelium (RPE) cells, photoreceptors, and choriocapillares, but the exact mechanism of cell death in AMD is not completely clear. This mechanism is important for prevention of and therapeutic intervention in AMD, which is a hardly curable disease. Present reports suggest that both apoptosis and pyroptosis (cell death dependent on caspase-1) as well as necroptosis (regulated necrosis dependent on the proteins RIPK3 and MLKL, caspase-independent) can be involved in the AMD-related death of RPE cells. Autophagy, a cellular clearing system, plays an important role in AMD pathogenesis, and this role is closely associated with the activation of the NLRP3 inflammasome, a central event for advanced AMD. Autophagy can play a role in apoptosis, pyroptosis, and necroptosis, but its contribution to AMD-specific cell death is not completely clear. Autophagy can be involved in the regulation of proteins important for cellular antioxidative defense, including Nrf2, which can interact with p62/SQSTM, a protein essential for autophagy. As oxidative stress is implicated in AMD pathogenesis, autophagy can contribute to this disease by deregulation of cellular defense against the stress. However, these and other interactions do not explain the mechanisms of RPE cell death in AMD. In this review, we present basic mechanisms of autophagy and its involvement in AMD pathogenesis and try to show a regulatory role of autophagy in RPE cell death. This can result in considering the genes and proteins of autophagy as molecular targets in AMD prevention and therapy.  相似文献   

12.
Aging of retinal pigment epithelial (RPE) cells of the eye is marked by accumulations of bisretinoid fluorophores; two of the compounds within this lipofuscin mixture are A2E and all-trans-retinal dimer. These pigments are implicated in pathological mechanisms involved in some vision-threatening disorders including age-related macular degeneration (AMD). Studies have shown that bisretinoids are photosensitive compounds that undergo photooxidation and photodegradation when irradiated with short wavelength visible light. Utilizing ultra performance liquid chromatography (UPLC) with electrospray ionization mass spectrometry (ESI-MS) we demonstrate that photodegradation of A2E and all-trans-retinal dimer generates the dicarbonyls glyoxal (GO) and methylglyoxal (MG), that are known to modify proteins by advanced glycation endproduct (AGE) formation. By extracellular trapping with aminoguanidine, we established that these oxo-aldehydes are released from irradiated A2E-containing RPE cells. Enzyme-linked immunosorbant assays (ELISA) revealed that the substrate underlying A2E-containing RPE was AGE-modified after irradiation. This AGE deposition was suppressed by prior treatment of the cells with aminoguanidine. AGE-modification causes structural and functional impairment of proteins. In chronic diseases such as diabetes and atherosclerosis, MG and GO modify proteins by non-enzymatic glycation and oxidation reactions. AGE-modified proteins are also components of drusen, the sub-RPE deposits that confer increased risk of AMD onset. These results indicate that photodegraded RPE bisretinoid is likely to be a previously unknown source of MG and GO in the eye.  相似文献   

13.
The structural and functional integrity of the retinal pigment epithelium (RPE) is fundamental for maintaining the function of the neuroretina. These specialized cells form a polarized monolayer that acts as the retinal–blood barrier, separating two distinct environments with highly specialized functions: photoreceptors of the neuroretina at the apical side and Bruch's membrane/highly vascularized choriocapillaris at the basal side. The polarized nature of the RPE is essential for the health of these two regions, not only in nutrient and waste transport but also in the synthesis and directional secretion of proteins required in maintaining retinal homoeostasis and function. Although multiple malfunctions within the RPE cells have been associated with development of age‐related macular degeneration (AMD), the leading cause of legal blindness, clear causative processes have not yet been conclusively characterized at the molecular and cellular level. This article focuses on the involvement of directionally secreted RPE proteins in normal functioning of the retina and on the potential association of incorrect RPE protein secretion with development of AMD. Understanding the importance of RPE polarity and the correct secretion of essential structural and regulatory components emerge as critical factors for the development of novel therapeutic strategies targeting AMD.  相似文献   

14.
15.
16.
Human HTRA1 is a highly conserved secreted serine protease that degrades numerous extracellular matrix proteins. We have previously identified HTRA1 as being up-regulated in osteoarthritic patients and as having the potential to regulate matrix metalloproteinase (MMP) expression in synovial fibroblasts through the generation of fibronectin fragments. In the present report, we have extended these studies and investigated the role of HTRA1 in the pathogenesis of intervertebral disc (IVD) degeneration. HTRA1 mRNA expression was significantly elevated in degenerated disc tissue and was associated with increased protein levels. However, these increases did not correlate with the appearance of rs11200638 single nucleotide polymorphism in the promoter region of the HTRA1 gene, as has previously been suggested. Recombinant HTRA1 induced MMP production in IVD cell cultures through a mechanism critically dependent on MEK but independent of IL-1β signaling. The use of a catalytically inactive mutant confirmed these effects to be primarily due to HTRA1 serine protease activity. HTRA1-induced fibronectin proteolysis resulted in the generation of various sized fragments, which when added to IVD cells in culture, caused a significant increase in MMP expression. Furthermore, one of these fragments was identified as being the amino-terminal fibrin- and heparin-binding domain and was also found to be increased within HTRA1-treated IVD cell cultures as well as in disc tissue from patients with IVD degeneration. Our results therefore support a scenario in which HTRA1 promotes IVD degeneration through the proteolytic cleavage of fibronectin and subsequent activation of resident disc cells.  相似文献   

17.
Age-related macular degeneration (AMD) is the leading cause of blindness in the world. Evidence indicates that the suppression of the ubiquitin-proteasome system (UPS) contributes to the accumulation of toxic proteins and inflammation in retinal pigment epithelium (RPE), the functional abnormalities and/or the degeneration of which are believed to be the initiators and major pathologies of AMD. To identify new protein associations with the altered UPS in AMD, we used LC-ESI-MS/MS to perform a proteomic analysis of the aqueous humor (AH) of AMD patients and matched control subjects. Six UPS-related proteins were present in the AH of the patients and control subjects. Four of the proteins, including 26S proteasome non-ATPase regulatory subunit 1 (Rpn2), were increased in patients, according to semi-quantitative proteomic profiling. An LC-MRM assay revealed a significant increase of Rpn2 in 15 AMD patients compared to the control subjects, suggesting that this protein could be a biomarker for AMD. [BMB Reports 2014; 47(5): 292-297]  相似文献   

18.
19.
Glycyrrhizin is a bioactive triterpenoid saponin extracted from a traditional Chinese medicinal herb, glycyrrhiza, and has been reported to protect the organs such as liver and heart from injuries. However, there is no report about the effects of glycyrrhizin on atrophic age‐related macular degeneration (AMD). This study investigated the effects of glycyrrhizin on retinal pigment epithelium (RPE) in vitro and retina of mice in vivo treated with sodium iodate (SI). Glycyrrhizin significantly inhibited SI‐induced reactive oxygen species (ROS), and decreased apoptosis of RPE in vitro. The underlying mechanisms included increased phosphorylation of Akt, and increased expression of nuclear factor erythroid 2‐related factor2 (Nrf‐2) and HO‐1, thereby protecting RPE from SI‐induced ROS and apoptosis. Furthermore, glycyrrhizin significantly decreased the apoptosis of retinal cells in vivo, resulting in the inhibition of thinning of retina, decreasing the number of drusen and improving the function of retina. These findings suggested that glycyrrhizin may be a potential candidate for the treatment of atrophic AMD in clinical practice.  相似文献   

20.
As a signaling hub, p62/sequestosome plays important roles in cell signaling and degradation of misfolded proteins. p62 has been implicated as an adaptor protein to mediate autophagic clearance of insoluble protein aggregates in age-related diseases, including age-related macular degeneration (AMD), which is characterized by dysfunction of the retinal pigment epithelium (RPE). Our previous studies have shown that cigarette smoke (CS) induces oxidative stress and inhibits the proteasome pathway in cultured human RPE cells, suggesting that p62-mediated autophagy may become the major route to remove impaired proteins under such circumstances. In the present studies, we found that all p62 mRNA variants are abundantly expressed and upregulated by CS induced stress in cultured human RPE cells, yet isoform1 is the major translated form. We also show that p62 silencing exacerbated the CS induced accumulation of damaged proteins, both by suppressing autophagy and by inhibiting the Nrf2 antioxidant response, which in turn, increased protein oxidation. These effects of CS and p62 reduction were further confirmed in mice exposed to CS. We found that over-expression of p62 isoform1, but not its S403A mutant, which lacks affinity for ubiquitinated proteins, reduced misfolded proteins, yet simultaneously promoted an Nrf2-mediated antioxidant response. Thus, p62 provides dual, reciprocal enhancing protection to RPE cells from environmental stress induced protein misfolding and aggregation, by facilitating autophagy and the Nrf2 mediated antioxidant response, which might be a potential therapeutic target against AMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号