首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress granules (SGs) are nonmembrane assemblies formed in cells in response to stress conditions. SGs mainly contain untranslated mRNA and a variety of proteins. RNAs and scaffold proteins with intrinsically disordered regions or RNA‐binding domains are essential for the assembly of SGs, and multivalent macromolecular interactions among these components are thought to be the driving forces for SG assembly. The SG assembly process includes regulation through post‐translational modification and involvement of the cytoskeletal system. During aging, many intracellular bioprocesses become disrupted by factors such as cellular environmental changes, mitochondrial dysfunction, and decline in the protein quality control system. Such changes could lead to the formation of aberrant SGs, as well as alterations in their maintenance, disassembly, and clearance. These aberrant SGs might in turn promote aging and aging‐associated diseases. In this paper, we first review the latest progress on the molecular mechanisms underlying SG assembly and SG functioning under stress conditions. Then, we provide a detailed discussion of the relevance of SGs to aging and aging‐associated diseases.  相似文献   

2.
Primary osteoarthritis (OA) is associated with aging, while post‐traumatic OA (PTOA) is associated with mechanical injury and inflammation. It is not clear whether the two types of osteoarthritis share common mechanisms. We found that miR‐146a, a microRNA‐associated with inflammation, is activated by cyclic load in the physiological range but suppressed by mechanical overload in human articular chondrocytes. Furthermore, miR‐146a expression is decreased in the OA lesions of human articular cartilage. To understand the role of miR‐146a in osteoarthritis, we systemically characterized mice in which miR‐146a is either deficient in whole body or overexpressed in chondrogenic cells specifically. miR‐146a‐deficient mice develop early onset of OA characterized by cartilage degeneration, synovitis, and osteophytes. Conversely, miR‐146a chondrogenic overexpressing mice are resistant to aging‐associated OA. Loss of miR‐146a exacerbates articular cartilage degeneration during PTOA, while chondrogenic overexpression of miR‐146a inhibits PTOA. Thus, miR‐146a inhibits both OA and PTOA in mice, suggesting a common protective mechanism initiated by miR‐146a. miR‐146a suppresses IL‐1β of catabolic factors, and we provide evidence that miR‐146a directly inhibits Notch1 expression. Therefore, such inhibition of Notch1 may explain suppression of inflammatory mediators by miR‐146a. Chondrogenic overexpression of miR‐146a or intra‐articular administration of a Notch1 inhibitor alleviates IL‐1β‐induced catabolism and rescues joint degeneration in miR‐146a‐deficient mice, suggesting that miR‐146a is sufficient to protect OA pathogenesis by inhibiting Notch signaling in the joint. Thus, miR‐146a may be used to counter both aging‐associated OA and mechanical injury‐/inflammation‐induced PTOA.  相似文献   

3.
4.
Congenital generalized lipodystrophy (CGL) and pulmonary arterial hypertension (PAH) have recently been associated with mutations in the caveolin‐1 ( CAV1 ) gene, which encodes the primary structural protein of caveolae. However, little is currently known about how these CAV1 mutations impact caveolae formation or contribute to the development of disease. Here, we identify a heterozygous F160X CAV1 mutation predicted to generate a C‐terminally truncated mutant protein in a patient with both PAH and CGL using whole exome sequencing, and characterize the properties of CAV1 , caveolae‐associated proteins and caveolae in skin fibroblasts isolated from the patient. We show that morphologically defined caveolae are present in patient fibroblasts and that they function in mechanoprotection. However, they exhibited several notable defects, including enhanced accessibility of the C‐terminus of wild‐type CAV1 in caveolae, reduced colocalization of cavin‐1 with CAV1 and decreased stability of both 8S and 70S oligomeric CAV1 complexes that are necessary for caveolae formation. These results were verified independently in reconstituted CAV1 ?/? mouse embryonic fibroblasts. These findings identify defects in caveolae that may serve as contributing factors to the development of PAH and CGL and broaden our knowledge of CAV1 mutations associated with human disease.   相似文献   

5.
Inhibition of mammalian target of rapamycin, mTOR, extends lifespan and reduces age‐related disease. It is not known what role mTOR plays in the arterial aging phenotype or if mTOR inhibition by dietary rapamycin ameliorates age‐related arterial dysfunction. To explore this, young (3.8 ± 0.6 months) and old (30.3 ± 0.2 months) male B6D2F1 mice were fed a rapamycin supplemented or control diet for 6–8 weeks. Although there were few other notable changes in animal characteristics after rapamycin treatment, we found that glucose tolerance improved in old mice, but was impaired in young mice, after rapamycin supplementation (both P < 0.05). Aging increased mTOR activation in arteries evidenced by elevated S6K phosphorylation (P < 0.01), and this was reversed after rapamycin treatment in old mice (P < 0.05). Aging was also associated with impaired endothelium‐dependent dilation (EDD) in the carotid artery (P < 0.05). Rapamycin improved EDD in old mice (P < 0.05). Superoxide production and NADPH oxidase expression were higher in arteries from old compared to young mice (P < 0.05), and rapamycin normalized these (P < 0.05) to levels not different from young mice. Scavenging superoxide improved carotid artery EDD in untreated (P < 0.05), but not rapamycin‐treated, old mice. While aging increased large artery stiffness evidenced by increased aortic pulse‐wave velocity (PWV) (P < 0.01), rapamycin treatment reduced aortic PWV (P < 0.05) and collagen content (P < 0.05) in old mice. Aortic adenosine monophosphate‐activated protein kinase (AMPK) phosphorylation and expression of the cell cycle‐related proteins PTEN and p27kip were increased with rapamycin treatment in old mice (all P < 0.05). Lastly, aging resulted in augmentation of the arterial senescence marker, p19 (P < 0.05), and this was ameliorated by rapamycin treatment (P < 0.05). These results demonstrate beneficial effects of rapamycin treatment on arterial function in old mice and suggest these improvements are associated with reduced oxidative stress, AMPK activation and increased expression of proteins involved in the control of the cell cycle.  相似文献   

6.
Increased gastrointestinal absorption and urinary excretion of zinc has been confirmed in experimental and clinical studies on primary arterial hypertension as a result from changes of intracellular and extracellular zinc content. In arterial hypertension, the levels of zinc in serum, lymphocyte, and bone decrease while increasing in heart, erythrocytes, kidney, liver, suprarenal glands and spleen. These changes result in the loss of zinc homeostasis that leads to various degrees of deficiency, not entirely compensated by nutritional factors or increased absorption in the gastrointestinal tract. Loss of zinc homeostasis can be both cause and effect of high blood pressure. In the present review, the role of zinc metabolism changes and its mechanisms in arterial hypertension are discussed.  相似文献   

7.
8.
The proliferation, migration and apoptotic resistance of pulmonary artery smooth muscle cells (PASMCs) are central to the progression of pulmonary arterial hypertension (PAH). Our previous study identified that fibroblast growth factor 21 (FGF21) regulates signalling pathway molecules, such as peroxisome proliferator‐activated receptor gamma (PPARγ), to play an important role in PAH treatment. However, the biological roles of miRNAs in these effects are not yet clear. In this study, using miRNA sequencing and real‐time PCR, we found that FGF21 treatment inhibited miR‐130 elevation in hypoxia‐induced PAH in vitro and in vivo. Dual luciferase reporter gene assays showed that miR‐130 directly negatively regulates PPARγ expression. Inhibition of miR‐130 expression suppressed abnormal proliferation, migration and apoptotic resistance in hypoxic PASMCs, and this effect was corrected upon PPARγ knockdown. Both the ameliorative effect of FGF21 on pulmonary vascular remodelling and the inhibitory effect on proliferation, migration and apoptotic resistance in PASMCs were observed following exogenous administration of miR‐130 agomir. In conclusion, this study revealed the protective effect and mechanism of FGF21 on PAH through regulation of the miR‐130/PPARγ axis, providing new ideas for the development of potential drugs for PAH based on FGF21.  相似文献   

9.
目的探索脂肪干细胞(ADSC)移植治疗野百合碱(MCT)诱导的肺动脉高压(PAH)大鼠的适宜细胞数和干预时间。 方法(1)MCT的建模时效和量效:雄性SD大鼠48只分为正常对照组,20 mg/kg、30 mg/kg、40 mg/kg MCT组分别予腹腔注射生理盐水、MCT 20 mg/kg、30 mg/kg、40 mg/kg,4和8周后,右心室插管法检测平均肺动脉压(mPAP),称重法计算右心室肥厚指数(RVHI)。(2)ADSC的治疗量效作用:雄性SD大鼠分别予腹腔注射MCT(30只)和生理盐水(30只),1周后通过颈静脉注射分别移植0.5×106、1.0×106、3.0×106、5.0×106ADSC,其他组予等量生理盐水。移植3周后检测mPAP和RVHI。(3)ADSC的治疗时效作用:雄性SD大鼠30只,分别注射40 mg/kg MCT(24只)和生理盐水(6只)。MCT腹腔注射1 d,1、2周后分别移植1.0×106个ADSC。MCT注射4周后检测mPAP和RVHI。多组间比较采用单因素或双因素方差分析,两两比较采用LSD检验。 结果(1)腹腔注射4周后,30 mg/ kg或40 mg/kg MCT组mPAP和RVHI均升高[mPAP值(24.89±3.31)mmHg,(27.19±2.11)mmHg比(15.80±0.42)mmHg,差异有统计学意义(P均< 0.05);RVHI值0.42±0.06,0.47±0.04比0.25±0.02,差异有统计学意义(P均< 0.05)]。8周后,20 mg/kg或30 mg/ kg MCT组mPAP和RVHI均恢复正常,而40 mg/kg MCT组大鼠全部死亡。(2)40 mg/ kg MCT诱导的PAH大鼠mPAP和RVHI均升高。移植1.0×106个ADSC可降低PAH大鼠的mPAP[(17.24±0.66)mmHg比(27.19±1.73)mmHg,P < 0.05]。移植0.5×106、3.0×106、5.0× 106个ADSC不能降低PAH大鼠的mPAP和RVHI。(3)MCT腹腔注射1周和2周后,移植1.0×106个ADSC可降低PAH大鼠的mPAP。 结论40 mg/kg MCT造模4周可建立稳定的PAH大鼠模型;造模1或2周后移植1.0×106个ADSC能有效降低PAH大鼠的mPAP。  相似文献   

10.
We have employed SELDI-TOF MS to screen for differentially expressed proteins in plasma samples from 27 patients with idiopathic pulmonary arterial hypertension (IPAH) and 26 healthy controls. One ion (m/z approximately 8600) that was found to be elevated in IPAH was validated by SELDI-TOF MS analysis of a second and separate set of plasma samples comprising 30 IPAH patients and 19 controls. The m/z 8600 was purified from plasma by sequential ion exchange and reverse-phase chromatographies and SDS-PAGE. It was identified, following trypsin digestion, by MS peptide analysis as the complement component, complement 4a (C4a) des Arg. Plasma levels of C4a des Arg measured by ELISA confirmed that the levels were significantly higher (p < 0.0001) in IPAH patients (2.12 +/- 0.27 microg/mL) compared with normal controls (0.53 +/- 0.05 microg/mL). A cut-off level of 0.6 microg/mL correctly classified 92% of IPAH patients and 80% of controls. Further studies will be needed to determine its performance as a diagnostic biomarker, whether used alone or in combination with other biomarkers. Nevertheless, this study demonstrates that putative biomarkers characteristic of IPAH can be identified using a conjoint SELDI-TOF MS - proteomics approach.  相似文献   

11.
Pulmonary arterial hypertension (PAH) is characterized by muscularized pulmonary blood vessels, leading to right heart hypertrophy and cardiac failure. However, state-of-the-art therapeutics fail to target the ongoing remodeling process. Here, this study shows that matrix metalloproteinases (MMP)-1 and MMP-10 levels are increased in the medial layer of vessel wall, serum, and M1-polarized macrophages from patients with PAH and the lungs of monocrotaline- and hypoxia-induced PAH rodent models. MMP-10 regulates the malignant phenotype of pulmonary artery smooth muscle cells (PASMCs). The overexpression of active MMP-10 promotes PASMC proliferation and migration via upregulation of cyclin D1 and proliferating cell nuclear antigen, suggesting that MMP-10 produced by infiltrating macrophages contributes to vascular remodeling. Furthermore, inhibition of STAT1 inhibits hypoxia-induced MMP-10 but not MMP-1 expression in M1-polarized macrophages from patients with PAH. In conclusion, circulating MMP-10 could be used as a potential targeted therapy for PAH.  相似文献   

12.
Alpha‐naphthylthiourea (ANTU), a rodenticide induces lung toxicity. Chrysin a flavonoid possesses antioxidant, anti‐inflammatory, and antihypertensive potential. The aim of this study was to evaluate the efficacy of chrysin against ANTU‐induced pulmonary edema (PE) and pulmonary arterial hypertension (PAH) in laboratory rats. Sprague‐Dawley rats were used to induce PE (ANTU, 10 mg/kg, ip) and PAH (ANTU, 5 mg/kg, ip, 4 weeks). Animals were treated with chrysin (10, 20, and 40 mg/kg) and various biochemical, molecular, and histological parameters were evaluated. Acute administration of ANTU induces PE revealed by significant (P < 0.05) increase in relative lung weight, pleural effusion volume, lung edema, bronchoalveolar lavage fluid cell counts, total protein, 5‐hydroxytryptamine (5‐HT), lactate dehydrogenase (LDH), and γ‐glutamyl transferase (GGT), whereas pretreatment with chrysin (20 and 40 mg/kg, ip) significantly (P < 0.05) attenuated these ANTU‐induced biochemical and histological alterations. Repeated administration of ANTU caused induction of PAH evaluated by significant (P < 0.05) alterations in electrocardiographic, hemodynamic changes, and left ventricular function, whereas chrysin (20 and 40 mg/kg, p.o.) treatment significantly (P < 0.05) attenuated these alterations. ANTU‐induced hematological and serum biochemical (aspartate transaminase, alanine transaminase, LDH, and creatinine kinase MB) alterations were significantly (P < 0.05) inhibited by chrysin. It also significantly (P < 0.05) decreased elevated levels of oxido‐nitrosative stress in the right ventricle (RV) and lung. Chrysin significantly (P < 0.05) attenuated downregulated endothelial nitric oxide synthase and upregulated vascular endothelial growth factor messenger RNA and protein expressions both in the RV and pulmonary artery. Chrysin inhibited ANTU‐induced PE and PAH via modulation of inflammatory responses (5‐HT, LDH, and GGT), oxido‐nitrosative stress, and VEGF and eNOs levels.  相似文献   

13.
Bmi‐1 prevents stem cell aging, at least partly, by blocking expression of the cyclin‐dependent kinase inhibitor p16Ink4a. Therefore, dysregulation of the Bmi‐1/p16Ink4a pathway is considered key to the loss of tissue homeostasis and development of associated degenerative diseases during aging. However, because Bmi‐1 knockout (KO) mice die within 20 weeks after birth, it is difficult to determine exactly where and when dysregulation of the Bmi‐1/p16Ink4a pathway occurs during aging in vivo. Using real‐time in vivo imaging of p16Ink4a expression in Bmi‐1‐KO mice, we uncovered a novel function of the Bmi‐1/p16Ink4a pathway in controlling homeostasis of the submandibular glands (SMGs), which secrete saliva into the oral cavity. This pathway is dysregulated during aging in vivo, leading to induction of p16Ink4a expression and subsequent declined SMG function. These findings will advance our understanding of the molecular mechanisms underlying the aging‐related decline of SMG function and associated salivary gland hypofunction, which is particularly problematic among the elderly.  相似文献   

14.
15.
Patrick Slama 《Proteins》2018,86(1):3-12
Residues at different positions of a multiple sequence alignment sometimes evolve together, due to a correlated structural or functional stress at these positions. Co‐evolution has thus been evidenced computationally in multiple proteins or protein domains. Here, we wish to study whether an evolutionary stress is exerted on a sequence alignment across protein domains, i.e., on longer sequence separations than within a single protein domain. JmjC‐containing lysine demethylases were chosen for analysis, as a follow‐up to previous studies; these proteins are important multidomain epigenetic regulators. In these proteins, the JmjC domain is responsible for the demethylase activity, and surrounding domains interact with histones, DNA or partner proteins. This family of enzymes was analyzed at the sequence level, in order to determine whether the sequence of JmjC‐domains was affected by the presence of a neighboring JmjN domain or PHD finger in the protein. Multiple positions within JmjC sequences were shown to have their residue distributions significantly altered by the presence of the second domain. Structural considerations confirmed the relevance of the analysis for JmjN‐JmjC proteins, while among PHD‐JmjC proteins, the length of the linker region could be correlated to the residues observed at the most affected positions. The correlation of domain architecture with residue types at certain positions, as well as that of overall architecture with protein function, is discussed. The present results thus evidence the existence of an across‐domain evolutionary stress in JmjC‐containing demethylases, and provide further insights into the overall domain architecture of JmjC domain‐containing proteins.  相似文献   

16.
The inherent complexity of aging‐related traits can temper progress in unraveling the genetic origins of healthspan. We focus on two generations in the Framingham Heart Study, the original (FHS) and offspring (FHSO) cohorts, to determine whether aging‐related processes in changing environments can substantially impact the role of lipid‐related genes discovered in candidate gene (the apolipoprotein E (APOE) e2/3/4 polymorphism) and genome‐wide (the APOB rs1042034 (C/T)) studies, in regulation of total cholesterol (TC) and onset of cardiovascular disease (CVD). We demonstrate that the APOE e4 allele and APOB CC genotype can play detrimental, neutral, and protective sex‐specific roles in the etiology of CVD at different ages and in different environments. We document antagonistic roles for the e4 allele in the onset of CVD characterized by detrimental effects at younger ages (RR≤ 75 years = 1.49, P = 7.5 × 10?4) and protective effects at older ages (RR76+years = 0.77, P = 0.044) for FHS participants. We found that disregarding the role of aging erroneously nullifies the significant effects of the e4 allele in this sample (RR = 0.92, P = 0.387). The leading biogenetic pathways mediating genetic effects on CVD may be more relevant to lipid metabolism for APOB than APOE. Aging‐related processes can modulate the strength of genetic associations with TC in the same individuals at different chronological ages. We found substantial differences in the effects of the same APOE and APOB alleles on CVD and TC across generations. The results suggest that aging‐related processes in changing environments may play key roles in the genetics of healthspan. Detailed systemic integrative analyses may substantially advance the progress.  相似文献   

17.
18.
Pulmonary arterial hypertension (PAH) comprises a heterogeneous group of diseases with diverse aetiologies. It is characterized by increased pulmonary arterial pressure and right ventricular (RV) failure without specific drugs for treatment. Emerging evidence suggests that inflammation and autoimmune disorders are common features across all PAH phenotypes. This provides a novel idea to explore the characteristics of immunological disorders in PAH and identify immune-related genes or biomarkers for specific anti-remodelling regimens. In this study, we integrated three gene expression profiles and performed Gene Ontology (GO) and KEGG pathway analysis. CIBERSORT was utilized to estimate the abundance of tissue-infiltrating immune cells in PAH. The PPI network and machine learning were constructed to identify immune-related hub genes and then evaluate the relationship between hub genes and differential immune cells using ImmucellAI. Additionally, we implemented molecular docking to screen potential small-molecule compounds based on the obtained genes. Our findings demonstrated the density and distribution of infiltrating CD4 T cells in PAH and identified four immune-related genes (ROCK2, ATHL1, HSP90AA1 and ACTR2) as potential targets. We also listed 20 promising molecules, including TDI01953, pemetrexed acid and radotinib, for PAH treatment. These results provide a promising avenue for further research into immunological disorders in PAH and potential novel therapeutic targets.  相似文献   

19.
The aim of the present study was to investigate the underlying mechanism of AS-IV and CCN1 in PAH and to evaluate whether the protective effect of AS-IV against PAH is associated with CCN1 and its related signalling pathway. In vivo, male SD rats were intraperitoneally injected with monocrotaline (MCT, 60 mg/kg) or exposed to hypoxia (10% oxygen) and gavaged with AS-IV (20, 40 and 80 mg/kg/day) to create a PAH model. In vitro, human pulmonary artery endothelial cells (hPAECs) were exposed to hypoxia (3% oxygen) or monocrotaline pyrrole (MCTP, 60 μg/mL) and treated with AS-IV (10, 20 and 40 μM), EGF (10 nM, ERK agonist), small interfering CCN1 (CCN1 siRNA) and recombinant CCN1 protein (rCCN1, 100 ng/mL). We identified the differences in the expression of genes in the lung tissues of PAH rats by proteomics. At the same time, we dynamically detected the expression of CCN1 by Western blot both in vivo and in vitro. The Western blot experimental results showed that the expression of CCN1 increased in the early stage of PAH and decreased in the advanced stage of PAH. The results showed that compared with the control group, MCT- and hypoxia-induced increased the hemodynamic parameters and apoptosis. AS-IV can improve PAH, as characterized by decreased hemodynamic parameters, vascular wall area ratio (WA%), vascular wall thickness ratio (WT%) and α-SMA expression and inhibition of cell apoptosis. Moreover, the improvement of PAH by AS-IV was accompanied by increased CCN1 expression, which activated the ERK1/2 signalling pathway. Meanwhile, CCN1 and p-ERK1/2 were inhibited by siCCN1 and promoted by rCCN1. EGF not only activated the ERK1/2 signalling pathway but also induced the expression of CCN1. In conclusion, AS-IV improves PAH by increasing the expression of CCN1 and activating the ERK1/2 signalling pathway. The results of our study provide a theoretical basis for additional study on the protective effect of AS-IV against PAH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号