首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
The age‐related impairment in muscle function results in a drastic decline in motor coordination and mobility in elderly individuals. Regular physical activity is the only efficient intervention to prevent and treat this age‐associated degeneration. However, the mechanisms that underlie the therapeutic effect of exercise in this context remain unclear. We assessed whether endurance exercise training in old age is sufficient to affect muscle and motor function. Moreover, as muscle peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) is a key regulatory hub in endurance exercise adaptation with decreased expression in old muscle, we studied the involvement of PGC‐1α in the therapeutic effect of exercise in aging. Intriguingly, PGC‐1α muscle‐specific knockout and overexpression, respectively, precipitated and alleviated specific aspects of aging‐related deterioration of muscle function in old mice, while other muscle dysfunctions remained unchanged upon PGC‐1α modulation. Surprisingly, we discovered that muscle PGC‐1α was not only involved in improving muscle endurance and mitochondrial remodeling, but also phenocopied endurance exercise training in advanced age by contributing to maintaining balance and motor coordination in old animals. Our data therefore suggest that the benefits of exercise, even when performed at old age, extend beyond skeletal muscle and are at least in part mediated by PGC‐1α.  相似文献   

3.
4.
The decline in skeletal muscle mass and strength occurring in aging, referred as sarcopenia, is the result of many factors including an imbalance between protein synthesis and degradation, changes in metabolic/hormonal status, and in circulating levels of inflammatory mediators. Thus, factors that increase muscle mass and promote anabolic pathways might be of therapeutic benefit to counteract sarcopenia. Among these, the insulin‐like growth factor‐1 (IGF‐1) has been implicated in many anabolic pathways in skeletal muscle. IGF‐1 exists in different isoforms that might exert different role in skeletal muscle. Here we study the effects of two full propeptides IGF‐1Ea and IGF‐1Eb in skeletal muscle, with the aim to define whether and through which mechanisms their overexpression impacts muscle aging. We report that only IGF‐1Ea expression promotes a pronounced hypertrophic phenotype in young mice, which is maintained in aged mice. Nevertheless, examination of aged transgenic mice revealed that the local expression of either IGF‐1Ea or IGF‐1Eb transgenes was protective against age‐related loss of muscle mass and force. At molecular level, both isoforms activate the autophagy/lysosome system, normally altered during aging, and increase PGC1‐α expression, modulating mitochondrial function, ROS detoxification, and the basal inflammatory state occurring at old age. Moreover, morphological integrity of neuromuscular junctions was maintained and preserved in both MLC/IGF‐1Ea and MLC/IGF‐1Eb mice during aging. These data suggest that IGF‐1 is a promising therapeutic agent in staving off advancing muscle weakness.  相似文献   

5.
Age‐related impairment of muscle function severely affects the health of an increasing elderly population. While causality and the underlying mechanisms remain poorly understood, exercise is an efficient intervention to blunt these aging effects. We thus investigated the role of the peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α), a potent regulator of mitochondrial function and exercise adaptation, in skeletal muscle during aging. We demonstrate that PGC‐1α overexpression improves mitochondrial dynamics and calcium buffering in an estrogen‐related receptor α‐dependent manner. Moreover, we show that sarcoplasmic reticulum stress is attenuated by PGC‐1α. As a result, PGC‐1α prevents tubular aggregate formation and cell death pathway activation in old muscle. Similarly, the pro‐apoptotic effects of ceramide and thapsigargin were blunted by PGC‐1α in muscle cells. Accordingly, mice with muscle‐specific gain‐of‐function and loss‐of‐function of PGC‐1α exhibit a delayed and premature aging phenotype, respectively. Together, our data reveal a key protective effect of PGC‐1α on muscle function and overall health span in aging.  相似文献   

6.
Androgen reduces fat mass, although the underlying mechanisms are unknown. Here, we examined the effect of testosterone on heat production and mitochondrial biogenesis. Testosterone-treated mice exhibited elevated heat production. Treatment with testosterone increased the expression level of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), ATP5B and Cox4 in skeletal muscle, but not that in brown adipose tissue and liver. mRNA levels of genes involved in mitochondrial biogenesis were elevated in skeletal muscle isolated from testosterone-treated male mice, but were down-regulated in androgen receptor deficient mice. These results demonstrated that the testosterone-induced increase in energy expenditure is derived from elevated mitochondrial biogenesis in skeletal muscle.  相似文献   

7.
8.
9.
Fibroblast growth factor 21 (FGF21) is a growth factor with pleiotropic effects on regulating lipid and glucose metabolism. Its expression is increased in skeletal muscle of mice and humans with mitochondrial disorders. However, the effects of FGF21 on skeletal muscle in response to mitochondrial respiratory chain deficiency are largely unknown. Here we demonstrate that the increased expression of FGF21 is a compensatory response to respiratory chain deficiency. The mRNA and protein levels of FGF21 were robustly raised in skeletal muscle from patients with mitochondrial myopathy or MELAS. The mammalian target of rapamycin (mTOR) phosphorylation levels and its downstream targets, Yin Yang 1 (YY1) and peroxisome proliferator-activated receptor γ, coactivator 1α (PGC-1α), were increased by FGF21 treatment in C2C12 myoblasts. Activation of the mTOR–YY1–PGC1α pathway by FGF21 in myoblasts regulated energy homeostasis as demonstrated by significant increases in intracellular ATP synthesis, oxygen consumption rate, activity of citrate synthase, glycolysis, mitochondrial DNA copy number, and induction of the expression of key energy metabolic genes. The effects of FGF21 on mitochondrial function required phosphoinositide 3-kinase (PI3K), which activates mTOR. Inhibition of PI3K, mTOR, YY1, and PGC-1α activities attenuated the stimulating effects of FGF21 on intracellular ATP levels and mitochondrial gene expression. Our findings revealed that mitochondrial respiratory chain deficiency elicited a compensatory response in skeletal muscle by increasing the FGF21 expression levels in muscle, which resulted in enhanced mitochondrial function through an mTOR–YY1–PGC1α-dependent pathway in skeletal muscle.  相似文献   

10.
Aging is associated with myocardial dysfunction although the underlying mechanism is unclear. AMPK, a key cellular fuel sensor for energy metabolism, is compromised with aging. This study examined the role of AMPK deficiency in aging‐associated myocardial dysfunction. Young or old wild‐type (WT) and transgenic mice with overexpression of a mutant AMPK α2 subunit (kinase dead, KD) were used. AMPK α isoform activity, myocardial function and morphology were examined. DCF and JC‐1 fluorescence probes were employed to quantify reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm), respectively. KD mice displayed significantly reduced α2 but not α1 AMPK isoform activity at both ages with a greater effect at old age. Aging itself decreased α1 isoform activity. Cardiomyocyte contractile function, intracellular Ca2+ handling, and SERCA2a levels were compromised with aging, the effects of which were exacerbated by AMPK deficiency. H&E staining revealed cardiomyocyte hypertrophy with aging, which was more pronounced in KD mice. TEM micrographs displayed severe disruption of mitochondrial ultrastructure characterized by swollen, irregular shape and disrupted cristae in aged KD compared with WT mice. Aging enhanced ROS production and reduced ΔΨm, the effects of which were accentuated by AMPK deficiency. Immunoblotting data depicted unchanged Akt phosphorylation and a significant decrease in mitochondrial biogenesis cofactor PGC‐1α in aged groups. AMPK deficiency but not aging decreased the phosphorylation of ACC and eNOS. Expression of membrane Glut4 and HSP90 was decreased in aged KD mice. Moreover, treatment of the AMPK activator metformin attenuated aging‐induced cardiomyocyte contractile defects. Collectively, our data suggest a role for AMPK deficiency in aging‐induced cardiac dysfunction possibly through disrupted mitochondrial function and ROS production.  相似文献   

11.
Although it is known that the expression and activity of sirtuin 1 (Sirt1) decrease in the aged kidney, the role of interaction between Sirt1 and hypoxia‐inducible factor (HIF)‐1α is largely unknown. In this study, we investigated whether HIF‐1α could be a deacetylation target of Sirt1 and the effect of their interaction on age‐associated renal injury. Five‐week‐old (young) and 24‐month‐old (old) C57Bl/6J mice were assessed for their age‐associated changes. Kidneys from aged mice showed increased infiltration of CD68‐positive macrophages, higher expression of extracellular matrix (ECM) proteins, and more apoptosis than young controls. They also showed decreased Sirt1 expression along with increased acetylated HIF‐1α. The level of Bcl‐2/adenovirus E1B‐interacting protein 3, carbonic anhydrase 9, Snail, and transforming growth factor‐β1, which are regulated by HIF‐1α, was significantly higher in aged mice suggesting that HIF‐1α activity was increased. In HK‐2 cells, Sirt1 inhibitor sirtinol and siRNA‐mediated knockdown of Sirt1 enhanced apoptosis and ECM accumulation. During hypoxia, Sirt1 was down‐regulated, which allowed the acetylation and activation of HIF‐1α. Resveratrol, a Sirt1 activator, effectively prevented hypoxia‐induced production of ECM proteins, mitochondrial damage, reactive oxygen species generation, and apoptosis. The inhibition of HIF‐1α activity by Sirt1‐induced deacetylation of HIF‐1α was confirmed by Sirt1 overexpression under hypoxic conditions and by resveratrol treatment or Sirt1 overexpression in HIF‐1α‐transfected HK‐2 cells. Finally, we confirmed that chronic activation of HIF‐1α promoted apoptosis and fibrosis, using tubular cell‐specific HIF‐1α transgenic mice. Taken together, our data suggest that Sirt1‐induced deacetylation of HIF‐1α may have protective effects against tubulointerstitial damage in aged kidney.  相似文献   

12.
13.
Skeletal muscle dysfunction contributes to exercise limitation in COPD. In this study cigarette smoke exposure was hypothesized to increase expression of the inflammatory cytokine, TNF‐α, thereby suppressing PGC‐1α, and hence affecting down stream molecules that regulate oxygen transport and muscle function. Furthermore, we hypothesized that highly vascularized oxidative skeletal muscle would be more susceptible to cigarette smoke than less well‐vascularized glycolytic muscle. To test these hypotheses, mice were exposed to cigarette smoke daily for 8 or 16 weeks, resulting in 157% (8 weeks) and 174% (16 weeks) increases in serum TNF‐α. Separately, TNF‐α administered to C2C12 myoblasts was found to dose‐dependently reduce PGC‐1α mRNA. In the smoke‐exposed mice, PGC‐1α mRNA was decreased, by 48% in soleus and 23% in EDL. The vascular PGC‐1α target molecule, VEGF, was also down‐regulated, but only in the soleus, which exhibited capillary regression and an oxidative to glycolytic fiber type transition. The apoptosis PGC‐1α target genes, atrogin‐1 and MuRF1, were up‐regulated, and to a greater extent in the soleus than EDL. Citrate synthase (soleus—19%, EDL—17%) and β‐hydroxyacyl CoA dehydrogenase (β‐HAD) (soleus—22%, EDL—19%) decreased similarly in both muscle types. There was loss of body and gastrocnemius complex mass, with rapid soleus but not EDL fatigue and diminished exercise endurance. These data suggest that in response to smoke exposure, TNF‐α‐mediated down‐regulation of PGC‐1α may be a key step leading to vascular and myocyte dysfunction, effects that are more evident in oxidative than glycolytic skeletal muscles. J. Cell. Physiol. 222: 320–327, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Ample evidences demonstrate that cytochrome P450 epoxygenase‐derived epoxyeicosatrienoic acids (EETs) exert diverse biological activities, which include potent vasodilatory, anti‐inflammatory, and cardiovascular protective effects. In this study, we investigated the effects of endothelium‐specific CYP2J2 overexpression on age‐related insulin resistance and metabolic dysfunction. Endothelium‐specific targeting of the human CYP epoxygenase, CYP2J2, transgenic mice (Tie2‐CYP2J2‐Tr mice) was utilized. The effects of endothelium‐specific CYP2J2 overexpression on aging‐associated obesity, inflammation, and peripheral insulin resistance were evaluated by assessing metabolic parameters in young (3 months old) and aged (16 months old) adult male Tie2‐CYP2J2‐Tr mice. Decreased insulin sensitivity and attenuated insulin signaling in aged skeletal muscle, adipose tissue, and liver were observed in aged adult male mice, and moreover, these effects were partly inhibited in 16‐month‐old CYP2J2‐Tr mice. In addition, CYP2J2 overexpression‐mediated insulin sensitization in aged mice was associated with the amelioration of inflammatory state. Notably, the aging‐associated increases in fat mass and adipocyte size were only observed in 16‐month‐old wild‐type mice, and CYP2J2 overexpression markedly prevented the increase in fat mass and adipocyte size in aged Tie2‐CYP2J2‐Tr mice, which was associated with increased energy expenditure and decreased lipogenic genes expression. Furthermore, these antiaging phenotypes of Tie2‐CYP2J2‐Tr mice were also associated with increased muscle blood flow, enhanced active‐phase locomotor activity, and improved mitochondrial dysfunction in skeletal muscle. Collectively, our findings indicated that endothelium‐specific CYP2J2 overexpression alleviated age‐related insulin resistance and metabolic dysfunction, which highlighted CYP epoxygenase‐EET system as a potential target for combating aging‐related metabolic disorders.  相似文献   

15.
Tumour necrosis factor (TNF)‐α has been considered to induce ischaemia‐reperfusion injury (IRI) of liver which is characterized by energy dysmetabolism. Peroxisome proliferator–activated receptor‐γ co‐activator (PGC)‐1α and mitofusion2 (Mfn2) are reported to be involved in the regulation of mitochondrial function. However, whether PGC‐1α and Mfn2 form a pathway that mediates liver IRI, and if so, what the underlying involvement is in that pathway remain unclear. In this study, L02 cells administered recombinant human TNF‐α had increased TNF‐α levels and resulted in down‐regulation of PGC‐1α and Mfn2 in a rat liver IRI model. This was associated with hepatic mitochondrial swelling, decreased adenosine triphosphate (ATP) production, and increased levels of reactive oxygen species (ROS) and alanine aminotransferase (ALT) activity as well as cell apoptosis. Inhibition of TNF‐α by neutralizing antibody reversed PGC‐1α and Mfn2 expression, and decreased hepatic injury and cell apoptosis both in cell culture and in animals. Treatment by rosiglitazone sustained PGC‐1α and Mfn2 expression both in IR livers, and L02 cells treated with TNF‐α as indicated by increased hepatic mitochondrial integrity and ATP production, reduced ROS and ALT activity as well as decreased cell apoptosis. Overexpression of Mfn2 by lentiviral‐Mfn2 transfection decreased hepatic injury in IR livers and L02 cells treated with TNF‐α. However, there was no up‐regulation of PGC‐1α. These findings suggest that PGC‐1α and Mfn2 constitute a regulatory pathway, and play a critical role in TNF‐α‐induced hepatic IRI. Inhibition of the TNF‐α or PGC‐1α/Mfn2 pathways may represent novel therapeutic interventions for hepatic IRI.  相似文献   

16.
The protein deacetylase, sirtuin 1 (SIRT1), is a proposed master regulator of exercise-induced mitochondrial biogenesis in skeletal muscle, primarily via its ability to deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). To investigate regulation of mitochondrial biogenesis by SIRT1 in vivo, we generated mice lacking SIRT1 deacetylase activity in skeletal muscle (mKO). We hypothesized that deacetylation of PGC-1α and mitochondrial biogenesis in sedentary mice and after endurance exercise would be impaired in mKO mice. Skeletal muscle contractile characteristics were determined in extensor digitorum longus muscle ex vivo. Mitochondrial biogenesis was assessed after 20 days of voluntary wheel running by measuring electron transport chain protein content, enzyme activity, and mitochondrial DNA expression. PGC-1α expression, nuclear localization, acetylation, and interacting protein association were determined following an acute bout of treadmill exercise (AEX) using co-immunoprecipitation and immunoblotting. Contrary to our hypothesis, skeletal muscle endurance, electron transport chain activity, and voluntary wheel running-induced mitochondrial biogenesis were not impaired in mKO versus wild-type (WT) mice. Moreover, PGC-1α expression, nuclear translocation, activity, and deacetylation after AEX were similar in mKO versus WT mice. Alternatively, we made the novel observation that deacetylation of PGC-1α after AEX occurs in parallel with reduced nuclear abundance of the acetyltransferase, general control of amino-acid synthesis 5 (GCN5), as well as reduced association between GCN5 and nuclear PGC-1α. These findings demonstrate that SIRT1 deacetylase activity is not required for exercise-induced deacetylation of PGC-1α or mitochondrial biogenesis in skeletal muscle and suggest that changes in GCN5 acetyltransferase activity may be an important regulator of PGC-1α activity after exercise.  相似文献   

17.
18.
The aim of this study was to investigate the neuroprotective effects of quercetin in mouse models of traumatic brain injury (TBI) and the potential role of the PGC‐1α pathway in putative neuroprotection. Wild‐type mice were randomly assigned to four groups: the sham group, the TBI group, the TBI+vehicle group and the TBI+quercetin group. Quercetin, a dietary flavonoid used as a food supplement, significantly reduced TBI‐induced neuronal apoptosis and ameliorated mitochondrial lesions. It significantly accelerated the translocation of PGC‐1α protein from the cytoplasm to the nucleus. In addition, quercetin restored the level of cytochrome c, malondialdehyde and superoxide dismutase in mitochondria. Therefore, quercetin administration can potentially attenuate brain injury in a TBI model by increasing the activities of mitochondrial biogenesis via the mediation of the PGC‐1α pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号