首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
《Current biology : CB》2021,31(18):4038-4051.e7
  1. Download : Download high-res image (270KB)
  2. Download : Download full-size image
  相似文献   

5.
6.
Advanced maternal age has been reported to impair oocyte quality; however, the underlying mechanisms remain to be explored. In the present study, we identified the lowered NAD+ content and decreased expression of NMNAT2 protein in oocytes from old mice. Specific depletion of NMNAT2 in mouse oocytes disturbs the meiotic apparatus assembly and metabolic activity. Of note, nicotinic acid supplementation during in vitro culture or forced expression of NMNAT2 in aged oocytes was capable of reducing the reactive oxygen species (ROS) production and incidence of spindle/chromosome defects. Moreover, we revealed that activation or overexpression of SIRT1 not only partly prevents the deficient phenotypes of aged oocytes but also ameliorates the meiotic anomalies and oxidative stress in NMNAT2‐depleted oocytes. To sum up, our data indicate a role for NMNAT2 in controlling redox homeostasis during oocyte maturation and uncover that NMNAT2‐ NAD+‐SIRT1 is an important pathway mediating the effects of maternal age on oocyte developmental competence.  相似文献   

7.
This study aims to compare the effect of early and late onset administration of oral antioxidants on number and quality of oocytes retrieved from aged mice after exogenous ovarian stimulation. Control hybrid females were fed a standard diet supplemented or not supplemented with pharmacological doses of vitamins C and E either from the first day of weaning or from the age of 32 weeks until they were autopsied at the age 40-42, 50-52, or 57-62 weeks after exogenous ovarian stimulation. Analysis of chromosomal distribution, DNA organization and cellular morphology was performed in ovulated cumulus-enclosed and -free oocytes, ovarian non-germinal vesicle oocytes enclosed by or free of mucous cumulus cells and in vitro-matured ovarian germinal-vesicle oocytes. Both early and late onset administration of oral antioxidants counteracted the negative effects of female aging on number of ovarian oocytes and total percentage of oocytes retrieved from oviducts and ovaries exhibiting a normal distribution of chromosomes in the metaphase-II plate and/or morphological traits of apoptosis. Although both early and late onset administration of oral antioxidants can counteract the negative effects of female aging on number and quality of oocytes, transference of these results to human beings should be made with caution because of the potential side effects of high doses of vitamins on reproductive function as well as many other undesirable systemic disorders.  相似文献   

8.
In order to study the effects of ubiquitin-proteasome pathway (UPP) on mouse oocyte meiosis and cleavage, oocytes undergoing maturation and parthenogenetic activation and 1-cell embryos were treated with lactacystin, a specific inhibitor of proteasome. The results indicated that the rate of GVBD was not influenced by the treatment, but polar body extrusion, parthenogenesis and first cleavage were inhibited. Immunofluorescent staining using anti β-tubulin antibody indicated that the continuous treatment of lactacystin from GV stage disorganized microtubules and spindle assembly. When metaphase stage oocytes were treated with the drug, the already formed spindle structure was not affected, but the oocytes were arrested at metaphases. The 1-cell embryos were arrested at interphase or metaphase of first mitosis when they were incubated in the drug. Proteasome regulatory subunit PA700 was located in the spindle region, as indicated by immunofluorescence. These results suggest that UPP has effects on the process of oocyte meiosis and early cleavage in many aspects, including normal organization of spindle at prophase and segregation of chromosomes at anaphase for normal meiosis.  相似文献   

9.
SIRT2 induces the checkpoint kinase BubR1 to increase lifespan   总被引:1,自引:0,他引:1  
Mice overexpressing the mitotic checkpoint kinase gene BubR1 live longer, whereas mice hypomorphic for BubR1 (BubR1H/H) live shorter and show signs of accelerated aging. As wild‐type mice age, BubR1 levels decline in many tissues, a process that is proposed to underlie normal aging and age‐related diseases. Understanding why BubR1 declines with age and how to slow this process is therefore of considerable interest. The sirtuins (SIRT1‐7) are a family of NAD+‐dependent deacetylases that can delay age‐related diseases. Here, we show that the loss of BubR1 levels with age is due to a decline in NAD+ and the ability of SIRT2 to maintain lysine‐668 of BubR1 in a deacetylated state, which is counteracted by the acetyltransferase CBP. Overexpression of SIRT2 or treatment of mice with the NAD+ precursor nicotinamide mononucleotide (NMN) increases BubR1 abundance in vivo. Overexpression of SIRT2 in BubR1H/H animals increases median lifespan, with a greater effect in male mice. Together, these data indicate that further exploration of the potential of SIRT2 and NAD+ to delay diseases of aging in mammals is warranted.  相似文献   

10.
Many studies have shown that the ubiq-uitin-proteasome pathway (UPP) for the degradation of short-lived proteins plays a key role in regulating cell cycle progression[1—3]. At least two distinct prote-olytic pathways are required for cell cycle process. The first pathway promotes transition from G1 to S phase, and the second initiates the onset of anaphase and exit from mitosis. The inhibition of UPP will re-sult in the blockage of cell cycle process. The knowl-edge of the role of UPP in…  相似文献   

11.
Neuromuscular decline occurs with aging. The neuromuscular junction (NMJ), the interface between motor nerve and muscle, also undergoes age‐related changes. Aging effects on the NMJ components—motor nerve terminal, acetylcholine receptors (AChRs), and nonmyelinating terminal Schwann cells (tSCs)—have not been comprehensively evaluated. Sirtuins delay mammalian aging and increase longevity. Increased hypothalamic Sirt1 expression results in more youthful physiology, but the relationship between NMJ morphology and hypothalamic Sirt1 was previously unknown. In wild‐type mice, all NMJ components showed age‐associated morphological changes with ~80% of NMJs displaying abnormalities by 17 months of age. Aged mice with brain‐specific Sirt1 overexpression (BRASTO) had more youthful NMJ morphologic features compared to controls with increased tSC numbers, increased NMJ innervation, and increased numbers of normal AChRs. Sympathetic NMJ innervation was increased in BRASTO mice. In contrast, hypothalamic‐specific Sirt1 knockdown led to tSC abnormalities, decreased tSC numbers, and more denervated endplates compared to controls. Our data suggest that hypothalamic Sirt1 functions to protect NMJs in skeletal muscle from age‐related changes via sympathetic innervation.  相似文献   

12.
Maternal obesity is associated with multiple adverse reproductive outcomes, whereas the underlying molecular mechanisms are still not fully understood. Here, we found the reduced nicotinamide phosphoribosyl transferase (NAMPT) expression and lowered nicotinamide adenine dinucleotide (NAD+) content in oocytes from obese mice. Next, by performing morpholino knockdown assay and pharmacological inhibition, we revealed that NAMPT deficiency not only severely disrupts maturational progression and meiotic apparatus, but also induces the metabolic dysfunction in oocytes. Furthermore, overexpression analysis demonstrated that NAMPT insufficiency induced NAD+ loss contributes to the compromised developmental potential of oocytes and early embryos from obese mice. Importantly, in vitro supplement and in vivo administration of nicotinic acid (NA) was able to ameliorate the obesity‐associated meiotic defects and oxidative stress in oocytes. Our results indicate a role of NAMPT in modulating oocyte meiosis and metabolism, and uncover the beneficial effects of NA treatment on oocyte quality from obese mice.  相似文献   

13.
Proline‐rich tyrosine kinase 2 (PYK2), a member of the protein tyrosine kinase family, plays an important role in various cellular processes. PYK2 can be phosphorylated on tyrosine 402 by diverse stimuli at the cell surface, and recent studies have shown that this activated form of PYK2 is enriched in oocytes and required for fertilization. However, the subcellular localization and functions of activated PYK2 in oocytes remain elusive. In this study, we demonstrate that the localization of p‐PYK2 undergoes dynamic changes during in vitro maturation of mouse oocytes. The signal of p‐PYK2 is initially dispersed in the cytoplasm, but begins to decorate organized microtubules after the germinal vesicle breakdown and localizes to spindle poles at metaphase. Our data further show that p‐PYK2 colocalizes with γ‐tubulin from the germinal vesicle stage through the end of meiosis in mouse oocytes. Nocodazole treatment and washout experiments confirm that p‐PYK2 associates with the oocyte spindle and spindle poles. Moreover, pharmacological inhibition of PYK2 activity dramatically alters the morphology of the bipolar spindle and prevents oocyte maturation. Together, these data suggest that activated PYK2 may function as a component of the microtubule organizing center to regulate spindle assembly during the meiotic process of mouse oocytes.  相似文献   

14.
While many studies have focused on the detrimental effects of advanced maternal age and harmful prenatal environments on progeny, little is known about the role of beneficial non‐Mendelian maternal inheritance on aging. Here, we report the effects of maternal age and maternal caloric restriction (CR) on the life span and health span of offspring for a clonal culture of the monogonont rotifer Brachionus manjavacas. Mothers on regimens of chronic CR (CCR) or intermittent fasting (IF) had increased life span compared with mothers fed ad libitum (AL). With increasing maternal age, life span and fecundity of female offspring of AL‐fed mothers decreased significantly and life span of male offspring was unchanged, whereas body size of both male and female offspring increased. Maternal CR partially rescued these effects, increasing the mean life span of AL‐fed female offspring but not male offspring and increasing the fecundity of AL‐fed female offspring compared with offspring of mothers of the same age. Both maternal CR regimens decreased male offspring body size, but only maternal IF decreased body size of female offspring, whereas maternal CCR caused a slight increase. Understanding the genetic and biochemical basis of these different maternal effects on aging may guide effective interventions to improve health span and life span.  相似文献   

15.
MEK (MAPK kinase) is an upstream protein kinase of MAPK in the MOS/MEK/MAPK/p90rsk signaling pathway. We previously reported the function and regulation of MAPK during rat oocyte maturation. In this study, we further investigated the localization and possible roles of MEK1/2. First, immunofluorescent staining revealed that p-MEK1/2 was restricted to the germinal vesicle (GV). After germinal vesicle breakdown (GVBD), p-MEK1/2 condensed in the vicinity of chromosomes and then translocated to the spindle poles at metaphase I, while spindle microtubules stained faintly. When the oocyte went through anaphase I and telophase I, p-MEK1/2 disappeared from spindle poles and became associated with the midbody. By metaphase II, p-MEK1/2 was again localized to the spindle poles. Second, p-MEK1/2 was localized to the centers of cytoplasmic microtubule asters induced by taxol. Third, p-MEK1/2 co-localized with gamma-tubulin in microtubule-organizing centers (MTOCs). Forth, treatment with U0126, a non-competitive MEK1/2 inhibitor, did not affect germinal vesicle breakdown, but caused chromosome mis-alignment in all MI oocytes examined and abnormal spindle organization as well as small cytoplasmic spindle-like structure formation in MII oocytes. Finally, U0126 reduced the number of cytoplasmic asters induced by taxol. Our data suggest that MEK1/2 has regulatory functions in microtubule assembly and spindle organization during rat oocyte meiotic maturation.  相似文献   

16.
Kallistatin, an endogenous protein, protects against vascular injury by inhibiting oxidative stress and inflammation in hypertensive rats and enhancing the mobility and function of endothelial progenitor cells (EPCs). We aimed to determine the role and mechanism of kallistatin in vascular senescence and aging using cultured EPCs, streptozotocin (STZ)‐induced diabetic mice, and Caenorhabditis elegans (C. elegans). Human kallistatin significantly decreased TNF‐α‐induced cellular senescence in EPCs, as indicated by reduced senescence‐associated β‐galactosidase activity and plasminogen activator inhibitor‐1 expression, and elevated telomerase activity. Kallistatin blocked TNF‐α‐induced superoxide levels, NADPH oxidase activity, and microRNA‐21 (miR‐21) and p16INK4a synthesis. Kallistatin prevented TNF‐α‐mediated inhibition of SIRT1, eNOS, and catalase, and directly stimulated the expression of these antioxidant enzymes. Moreover, kallistatin inhibited miR‐34a synthesis, whereas miR‐34a overexpression abolished kallistatin‐induced antioxidant gene expression and antisenescence activity. Kallistatin via its active site inhibited miR‐34a, and stimulated SIRT1 and eNOS synthesis in EPCs, which was abolished by genistein, indicating an event mediated by tyrosine kinase. Moreover, kallistatin administration attenuated STZ‐induced aortic senescence, oxidative stress, and miR‐34a and miR‐21 synthesis, and increased SIRT1, eNOS, and catalase levels in diabetic mice. Furthermore, kallistatin treatment reduced superoxide formation and prolonged wild‐type C. elegans lifespan under oxidative or heat stress, although kallistatin's protective effect was abolished in miR‐34 or sir‐2.1 (SIRT1 homolog) mutant C. elegans. Kallistatin inhibited miR‐34, but stimulated sir‐2.1 and sod‐3 synthesis in C. elegans. These in vitro and in vivo studies provide significant insights into the role and mechanism of kallistatin in vascular senescence and aging by regulating miR‐34a‐SIRT1 pathway.  相似文献   

17.
The Ascidiacea, the invertebrate chordates, includes three orders; the Stolidobranchia is the most complex. Until the present study, the onset of oocyte maturation (germinal vesicle breakdown) had been investigated in only a single pyurid (Halocynthia roretzi), in which germinal vesicle breakdown (GVBD) begins when the oocyte contacts seawater (SW); nothing was known about internal events. This study strongly suggests the importance of protein phosphorylation in this process. Herdmania pallida (Pyuridae) functions like H. roretzi; GVBD occurs in SW. Oocytes of Cnemidocarpa irene (Styelidae) do not spontaneously undergo GVBD in SW but must be activated. Herdmania oocytes are inhibited from GVBD by pH 4 SW and subsequently activated by mastoparan (G-protein activator), A23187 (Ca2+ ionophore) or dimethylbenzanthracene (tyrosine kinase activator). This requires maturation promoting factor (MPF) activity; cyclin-dependent kinase inhibitors roscovitine and olomoucine are inhibitory. It also entails dephosphorylation as demonstrated by the ability of the phosphatase inhibitor vitamin K3 to inhibit GVBD. GVBD is also inhibited by the tyrosine kinase inhibitors tyrphostin A23 and genistein, and LY-294002, a phosphatidylinositol-3-kinase inhibitor previously shown to inhibit starfish GVBD. LY-294002 inhibits strongly when activation is by mastoparan or ionophore but not when activated by dimethylbenzanthracene (DMBA). The DMBA is hypothesized to phosphorylate a phosphatase directly or indirectly causing secondary activation, bypassing inhibition.  相似文献   

18.
19.
20.
Salvianolic acid (SA) is known for improving blood circulation, scavenging hydroxyl radicals, and preventing platelet aggregation. The research explored whether SA can protect against cardiovascular disease induced by high glucose conditions. Our results indicate that SA significantly increases cells viability and nitric oxide levels while decreasing reactive oxygen species generation. SA upregulated the expression levels of Bcl‐2 and decreased the levels of Bax, cleaved caspase‐3, and cleaved caspase‐9. Furthermore, the expression levels of Sirtuin 1 (Sirt1) and p‐endothelial nitric oxide synthase (eNOS) were markedly increased in response to SA treatment. Moreover, exposure of human umbilical vein endothelial cells to Ex527 resulted in reducing expression of p‐eNOS. However, the beneficial effects of SA were abolished partially when Ex527 was added. These findings suggest that SA can be used as a potential therapeutic to protect against high glucose‐induced endothelial injury by modulating Sirt1‐eNOS pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号