首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method was devised which increases the cholesterol concentration of rat liver plasma membranes by exchange from cholesterol-rich liposomes at low temperature (4 degrees C). When the cholesterol concentration of liver plasma membranes is increased, there is an increase in lipid order as detected by a decrease in mobility of an incorporated fatty acid spin probe. This is accompanied by an inhibition of adenylate cyclase activity. The various ligand-stimulated adenylate cyclase activities exhibit different sensitivities to inhibition by cholesterol, with inhibition of glucagon-stimulated greater than fluoride-stimulated greater than basal activity. The bilayer-fluidizing agent benzyl alcohol is able to reverse the inhibitory effect of cholesterol on adenylate cyclase activity in full. The thermostability of fluoride-stimulated cyclase is increased in the cholesterol-rich membranes. Elevated cholesterol concentrations abolish the lipid-phase separation occurring at 28 degrees C in native membranes as detected by an incorporated fatty acid spin probe. This causes Arrhenius plots of glucagon-stimulated adenylate cyclase activity to become linear, rather than exhibiting a break at 28 degrees C. It is suggested that the cholesterol contents of both halves of the bilayer are increased by the method used and that inhibition of adenylate cyclase ensues, owing to the increase in lipid order and promotion of protein-protein and specific cholesterol-phospholipid interactions.  相似文献   

2.
Incubation of rat liver plasma membranes with liposomes of dioleoyl phosphatidic acid (dioleoyl-PA) led to an inhibition of adenylate cyclase activity which was more pronounced when fluoride-stimulated activity was followed than when glucagon-stimulated activity was followed. If Mn2+ (5 mM) replaced low (5 mM) [Mg2+] in adenylate cyclase assays, or if high (20 mM) [Mg2+] were employed, then the perceived inhibitory effect of phosphatidic acid was markedly reduced when the fluoride-stimulated activity was followed but was enhanced for the glucagon-stimulated activity. The inhibition of adenylate cyclase activity observed correlated with the association of dioleoyl-PA with the plasma membranes. Adenylate cyclase activity in dioleoyl-PA-treated membranes, however, responded differently to changes in [Mg2+] than did the enzyme in native liver plasma membranes. Benzyl alcohol, which increases membrane fluidity, had similar stimulatory effects on the fluoride- and glucagon-stimulated adenylate cyclase activities in both native and dioleoyl-PA-treated membranes. Incubation of the plasma membranes with phosphatidylserine also led to similar inhibitory effects on adenylate cyclase and responses to Mg2+. Arrhenius plots of both glucagon- and fluoride-stimulated adenylate cyclase activity were different in dioleoyl-PA-treated plasma membranes, compared with native membranes, with a new 'break' occurring at around 16 degrees C, indicating that dioleoyl-PA had become incorporated into the bilayer. E.s.r. analysis of dioleoyl-PA-treated plasma membranes with a nitroxide-labelled fatty acid spin probe identified a new lipid phase separation occurring at around 16 degrees C with also a lipid phase separation occurring at around 28 degrees C as in native liver plasma membranes. It is suggested that acidic phospholipids inhibit adenylate cyclase by virtue of a direct headgroup specific interaction and that this perturbation may be centred at the level of regulation of this enzyme by the stimulatory guanine nucleotide regulatory protein NS.  相似文献   

3.
Prilocaine can increase the fluidity of rat liver plasma membranes, as indicated by a fatty acid spin-probe. This led to the activation of the membrane-bound fluoride-stimulated adenylate cyclase activity, but not the Lubrol-solubilized activity, suggesting that increased lipid fluidity can activate the enzyme. With increasing prilocaine concentrations above 10 mM, the membrane-bound fluoride-stimulated activity was progressively inhibited, even though bilayer fluidity continued to increase and the activity of the solubilized enzyme remained unaffected. Glucagon-stimulated adenylate cyclase was progressively inhibited by increasing prilocaine concentrations. Prilocaine (10 mM) had no effect on the lipid phase separation occurring at 28 degrees C and attributed to those lipids in the external half of the bilayer, as indicated by Arrhenius plots of both glucagon-stimulated adenylate cyclase activity and the order parameter of a fatty acid spin-probe. However, 10 mM-prilocaine induced a lipid phase separation at around 11 degrees C that was attributed to the lipids of the internal (cytosol-facing) half of the bilayer. It is suggested that prilocaine (10 mM) can selectively perturb the inner half of the bilayer of rat liver plasma membranes owing to its preferential interaction with the acidic phospholipids residing there.  相似文献   

4.
Increasing concentrations of either quinidine or melittin gave a dose-dependent inhibition of both the glucagon- and fluoride-stimulated activities of adenylate cyclase in the liver plasma membranes. At similar concentrations these agents increased the order of liver plasma membranes as detected by a fatty acid ESR probe, doxyl stearic acid. This increase in bilayer order (decrease in 'fluidity') is suggested to explain the inhibitory action of quinidine on adenylate cyclase activity but only in part contributes to the inhibitory action of melittin on adenylate cyclase. Arrhenius plots of fluoride-stimulated activity became non-linear in the presence of either quinidine or melittin, with a single well-defined break occurring at around 12 degrees C in each instance. Arrhenius plots of the glucagon-stimulated activity also exhibited such a novel break at around 12 degrees C when either quinidine or melittin were present as well as exhibiting a break at around 28 degrees C, as was seen in the absence of these ligands. The fatty acid spin probe inserted into liver plasma membranes detected a novel lipid phase separation occurring at around 12 degrees C when either quinidine or melittin was present and showed that the lipid phase separation occurring at around 28 degrees C in native membranes was apparently unaffected by these ligands.  相似文献   

5.
1. Arrhenius plots of the glucagon-stimulated adenylate cyclase, 5'-nucleotidase, (Na+ + K+)-stimulated adenosine triphosphatase and Mg2+-dependent adenosine triphosphatase activities of control hamster liver plasma membranes exhibited two break points at around 25 and 13 degrees C, whereas Arrhenius plots of their activities in hibernating hamster liver plasma membranes exhibited two break points at around 25 and 4 degrees C. 2. A single break occurring between 25 and 26 degrees C was observed in Arrhenius plots of the activities of fluoride-stimulated adenylate cyclase, basal adenylate cyclase and cyclic AMP phosphodiesterase of liver plasma membranes from both control and hibernating animals. 3. Arrhenius plots of phosphodiesterase I activity showed a single break at 13 degrees C for membranes from control animals, and a single break at around 4 degrees C for liver plasma membranes from hibernating animals. 4. The temperature at which break points occurred in Arrhenius plots of glucagon- and fluoride-stimulated adenylate cyclase activity were decreased by about 7--8 degrees C by addition of 40 mm-benzyl alcohol to the assays. 5. Discontinuities in the Arrhenius plots of 4-anilinonaphthalene-1-sulphonic acid fluorescence occurred at around 24 and 13 degrees C for liver plasma membranes from control animals, and at around 25 and 4 degrees C for membranes from hibernating animals. 6. We suggest that in hamster liver plasma membranes from control animals a lipid phase separation occurs at around 25 degrees C in the inner half of the bilayer and at around 13 degrees C in the outer half of the bilayer. On hibernation a change in bilayer asymmetry occurs, which is expressed by a decrease in the temperature at which the lipid phase separation occurs in the outer half of the bilayer to around 4 degrees C. The assumption made is that enzymes expressing both lipid phase separations penetrate both halves of the bilayer, whereas those experiencing a single break penetrate one half of the bilayer only.  相似文献   

6.
Adenylate cyclase activation by corticotropin (ACTH), fluoride and forskolin was studied as a function of membrane structure in plasma membranes from bovine adrenal cortex. The composition of these membranes was characterized by a very low cholesterol and sphingomyelin content and a high protein content. The fluorescent probes 1,6-diphenylhexa-1,3,5-triene (DPH) and a cationic analogue 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) were, respectively, used to probe the hydrophobic and polar head regions of the bilayer. When both probes were embedded either in the plasma membranes or in liposomes obtained from their lipid extracts, they exhibited lifetime heterogeneity, and in terms of the order parameter S, hindered motion. Under all the experimental conditions tested, S was higher for TMA-DPH than for DPH but both S values decreased linearly with temperature within the range of 10 to 40 degrees C, in the plasma membranes and the liposomes. This indicated the absence of lipid phase transition and phase separation. Addition to the membranes of up to 100 mM benzyl alcohol at 20 degrees C also resulted in a linear decrease in S values. Membrane perturbations by temperature changes or benzyl alcohol treatment made it possible to distinguish between the characteristics of adenylate cyclase activation with each of the three effectors used. Linear Arrhenius plots showed that when adenylate cyclase activity was stimulated by forskolin or NaF, the activation energy was similar (70 kJ.mol-1). Fluidification of the membrane with benzyl alcohol concentrations of up to 100 mM at 12 or 24 degrees C produced a linear decrease in the forskolin-stimulated activity, that led to its inhibition by 50%. By contrast, NaF stabilized adenylate cyclase activity against the perturbations induced by benzyl alcohol at both temperatures. In the presence of ACTH, biphasic Arrhenius plots were characterized by a well-defined break at 18 degrees C, which shifted at 12.5 degrees C in the presence of 40 mM benzyl alcohol. These plots suggested that ACTH-sensitive adenylate cyclase exists in two different states. This hypothesis was supported by the striking difference in the effects of benzyl alcohol perturbation when experiments were performed below and above the break temperature. The present results are consistent with the possibility that clusters of ACTH receptors form in the membrane as a function of temperature and/or lipid phase fluidity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Ca2+ decreased the lipid fluidity of rat liver plasma membranes labeled with 5-nitroxide stearate, I(12,3), as indicated by the order parameter (S). These effects form a reversible, saturable process with an association constant of 1 x 10(3) M-1. Arrhenius-type plots of S indicated that the lipid phase separation, present in the external leaflet of native membranes between 28 and 19 degrees C, is perturbed by mM Ca2+ such that the high temperature onset is elevated to 32-34 degrees C. Fluoride-stimulated adenylate cyclase was similarly inhibited by Ca2+ (ID50 = 1 mM) for the enzyme in membrane-bound or solubilized states. The glucagon-stimulated activity was more sensitive to Ca2+ inhibition with an ID50 of 0.2 mM. These inhibitory effects are due neither to perturbations of glucagon binding to its receptor nor to fluidity changes, but are instead attributed to direct Ca2+-enzyme interactions. Such binding desensitizes the enzyme to fluidity alterations induced by temperature elevation or benzyl alcohol addition. With Ca2+, Arrhenius plots of glucagon-stimulated activity indicated breaks at 32 and 16 degrees C, whereas those of fluoride-stimulated activity showed one break at 17 degrees C. Without Ca2+, Arrhenius plots exhibited one break at 28 degrees C for glucagon-stimulated activity, whereas fluoride-stimulated plots were linear. We propose that Ca2+ achieves these effects through asymmetric perturbations of the membrane lipid structure.  相似文献   

8.
1. Synthetic lysophosphatidylcholines inhibit the glucagon-stimulated adenylate cyclase activity of rat liver plasma membranes at concentrations two to five times lower than those needed to inhibit the fluoride-stimulated activity. 2. Specific 125I-labelled glucagon binding to hormone receptors is inhibited at concentrations similar to those inhibiting the fluoride-stimulated activity. 3. At concentrations of lysophosphatidylcholines immediately below those causing inhibition, an activation of adenylate cyclase activity or hormone binding was observed. 4 These effects are essentially reversible. 5. We conclude that the increased sensitivity of glucagon-stimulated adenylate cyclase to inhibition may be due to the lysophosphatidylcholines interfering with the physical coupling between the hormone receptor and catalytic unit of adenylate cyclase. 6. We suggest that, in vivo, it is possible that lysophosphatidylcholines may modulate the activity of adenylate cyclase only when it is in the hormone-stimulated state.  相似文献   

9.
The cationic local anaesthetics carbocaine and unpercaine were found to increase the fluoride-stimulated adenylate cyclase up to a maximum level; above this maximum level further increases in drug concentration inhibited the enzyme. At concentrations where this activity was stimulated, a fatty acid spin label detected an increase in bilayer fluidity, which, it is suggested, is responsible for the activation of the enzyme. A solubilized enzyme was unaffected by the drugs, a finding consistent with this proposal. These cationic drugs began to inhibit the glucagon-stimulated activity at concentrations where they activated the fluoride-stimulated activity. It is suggested that this is due to their effect on the coupling interaction between the receptor and catalytic unit. The anionic drugs, phenobarbital, pentobarbital, and salicylic acid, all inhibited the fluoride-stimulated enzyme. This may be due in part to a direct effect on the protein and in part to the interaction of the drugs with the bilayer. The drugs had small inhibitory effects on the lubrol-solubilized enzyme. The glucagon-stimulated enzyme was initially inhibited by the anionic drugs at low concentrations, then activated, and finally inhibited with increasing drug concentration. The reasons for such changes are complex, but there was no evidence from electron spin resonance studies to suggest that the elevations in activity were due to increases in bilayer fluidity.  相似文献   

10.
The effect of the hepatocarcinogen dimethylnitrosamine on rat liver plasma membrane adenylate cyclase activity and lipid fluidity was assessed. Glucagon-stimulated adenylate cyclase activity exhibited a complex response to increasing concentrations of dimethylnitrosamine, whereas fluoride-stimulated adenylate cyclase activity was progressively inhibited. Maximal inhibitory effects were observed at a concentration of 15 mM in both cases. The activity of detergent-solubilized adenylate cyclase was unaffected by dimethylnitrosamine. ESR analysis using a fatty acid spin probe showed that dimethylnitrosamine produced a marked, dose-dependent reduction in the fluidity of the plasma membrane with a maximal effect occurring at 20 mM. Dimethylnitrosamine also elevated the temperature at which the lipid phase separation occurred in rat liver plasma membranes, from 28 degrees C to 31 degrees C. The non-carcinogenic but structurally similar compound, dimethylamine hydrochloride neither inhibited adenylate cyclase nor decreased plasma membrane fluidity. It is suggested that the decrease in membrane fluidity, induced by dimethylnitrosamine, via its effects on membrane fluidity, could influence plasma membrane function and cellular regulation.  相似文献   

11.
The effects of glucose, a series of glucose metabolites, nicotinamide nucleotides, Ca2+ and p-chloromercuribenzenesulphonate on adenylate cyclase activity in homogenates of mouse pancreatic islets were studied. The basal activity of the adenylate cyclase was approx. 6 pmol of cyclic AMP formed/30 min per microng of DNA at 30 degrees C. The enzyme activity was stimulated by some 150% by fluoride. Starvation of the animals for 48h had no effect on either the basal or the fluoride-stimulated activity. The adenylate cyclase activity was increased by 40-50% when 17 mM-glucose, 10 micronM-phosphoenolpyruvate or 10 micronM-pyruvate was added to the assay medium. The effect of glucose was unchanged in the presence of 17 mM-mannoheptulose, and mannoheptulose alone had no effect. The other glycolytic intermediates, and the coenzymes NAD+, NADH and NADPH, at concentrations up to 1 mM were without any detectable effect on the rate of formation of cyclic AMP. The insulin secretagogue p-chloromercuribenzenesulphonate inhibited the adenylate cyclase markedly even at a concentration of 10 micronM. Calculated concentrations of free Ca2+ of 10 micronM and 0.1 mM inhibited adenylate cyclase by 29 and 71% respectively. It is concluded that both glucose itself and phosphoenolpyruvate and/or pyruvate are true activating ligands for islet and adenylate cyclase and that inhibition of the cyclase by Ca2+ may be of physiological significance.  相似文献   

12.
Effect of GTP on adenylate cyclase of liver plasma membrane was examined using ATP which was extensively purified by DEAE-cellulose column chromatography. In the incubation containing 2mM purified ATP as substrate, GTP enhanced basal and glucagon- or fluoride-stimulated activities. When the unpurified ATP at 2mM was used, all the activities were high and the stimulatory effect of GTP was not detected. The substance(s) which was recovered from a small but significant peak on DEAE-cellulose column was equivalent to 10–100μM GTP in stimulating adenylate cyclase. These results indicate that, if highly purified ATP is used as substrate, GTP can enhance adenylate cyclase activity in the presence of millimolar concentration of ATP and that GTP enhances not only the glucagon-stimulated adenylate cyclase but also the basal as well as fluoride-stimulated adenylate cyclase activities.  相似文献   

13.
For a variety of ligand states, adenylate cyclase activity in the presence of Mn2+ was greater than with Mg2+. Trypsin treatment of intact hepatocytes, under conditions which destroy cell surface glucagon receptors, led to a first order loss of glucagon-stimulated adenylate cyclase activity in isolated membranes assayed in the presence of Mn2+ whether or not GTP (100 microM) was present in the assays. Arrhenius plots of basal activity exhibited a break at around 22 degrees C, those with NaF were linear and those with glucagon +/- GTP (100 microM) were biphasic with a break at around 28 degrees C. It is suggested that Mn2+ perturbs the coupling interaction between the glucagon receptor and catalytic unit of adenylate cyclase at the level of the guanine nucleotide regulatory protein. This appears to take the form of Mn2+ preventing GTP from initiating glucagon's activation of adenylate cyclase through a collision coupling mechanism.  相似文献   

14.
Arrhenius plots of fluoride- and guanine-nucleotide-stimulated adenylate cyclase activity were linear in adipocyte plasma membranes from lean and obese (ob/ob) mice . Arrhenius plots of isoprenaline-stimulated adenylate cyclase activity in hepatic plasma membranes biphasic in both groups. The results were biphasic in membranes from Jean mice but linear in membranes from obese mice. In contrast, Arrhenius plots of glucagon-stimulated adenylate cyclase activity in hepatic plasma membranes were biphasic in both groups. The results suggest that the coupling between the -receptor and the regulatory unit of adenylate cyclase, which has been observed to be defective in adipocyte plasma membranes from obese mice, is influenced by a different lipid environment in membranes from obese animals.  相似文献   

15.
Arrhenius plots of the fluoride-stimulated adenylate cyclase activity of rat liver plasma membranes are linear. Solubilisation using various lubrol detergents yield adenylate cyclase preparations whose Arrhenius plots reflect the physical properties of the detergent used. This suggests that the detergent is tightly bound to the enzyme and can modulate its activity.  相似文献   

16.
Adenylate cyclase activation by GTP and octopamine as well as basal activity (in the presence of Mg2+) have been studied as a function of membrane structure in plasma membranes from brain of the dipterous Ceratitis capitata. Benzyl alcohol and lidocaine, but not phenobarbital, inhibited the three activities to the same extent. Triton X-100-solubilized adenylate cyclase was also inhibited by benzyl alcohol and lidocaine, but not by phenobarbital. Results could be explained by an effect on the catalytic unit lipid environment, which would be maintained after solubilization, counteracting the effect of these drugs to facilitate lateral diffusion and coupling of adenylate cyclase components in the lipid bilayer. The observation that the insect adenylate cyclase is relatively insensitive to changes in bulk bilayer fluidity is strengthened by the absence of effect of phenobarbital on enzyme activities. Indeed, this compound was as active as lidocaine or benzyl alcohol in increasing bulk membrane fluidity. The response of C. capitata adenylate cyclase to changes in membrane fluidity is different from that recorded in mammalian systems. This may be functionally important and result from the fact that insects are not warm-blooded.  相似文献   

17.
Adenylate cyclase and 5'-nucleotidase activities in rat liver plasma membranes were assayed in vitro in the presence of 4-hydroxy-2,3-trans-nonenal (HNE), a major end-product of microsomal lipid peroxidation. Both basal and glucagon-stimulated adenylate cyclase were inhibited in a dose-dependent manner, even at micromolar HNE concentrations, whereas fluoride-stimulated activity increased. A biphasic, dose- and time-dependent effect was noted when the basal activity was monitored at increasing doses. 5'-Nucleotidase activity was also decreased by HNE, but only at millimolar concentrations. These findings are related to the view that aldehydes, especially HNE, may act as diffusible cytotoxic compounds when lipid peroxidative derangement of membrane lipids is provoked by toxic conditions.  相似文献   

18.
1. The lipids composition of rat liver plasma membranes was substantially altered by introducing synthetic phosphatidylcholines into the membrane by the techniques of lipid substitution or lipid fusion. 40-60% of the total lipid pool in the modified membranes consisted of a synthetic phosphatidylcholine. 2. Lipid substitution, using cholate to equilibrate the lipid pools, resulted in the irreversible loss of a major part of the adenylate cyclase activity stimulated by F-, GMP-P(NH)P or glucagon. However, fusion with presonicated vesicles of the synethic phosphatidylcholines causes only small losses in adenylate cyclase activity stimulated by the same ligands. 3. The linear form of the Arrhenius plots of adenylate cyclase activity stimulated by F- or GMP-(NH)P was unaltered in all of the membrane preparations modified by substitution or fusion, with very similar activation energies to those observed with the native membrane. The activity of the enzyme therefore appears to be very insensitive to its lipid environment when stimulated by F- or gmp-p(nh)p. 4. in contrast, the break at 28.5 degrees C in the Arrhenius plot of adenylate cyclase activity stimulated by glucagon in the native membrane, was shifted upwards by dipalmitoyl phosphatidylcholine, downwards by dimyristoyl phosphatidylcholine, and was abolished by dioleoyl phosphatidylcholine. Very similar shifts in the break point were observed for stimulation by glucagon or des-His-glucagon in combination with F- or GMP-P(NH)P. The break temperatures and activation energies for adenylate cyclase activity were the same in complexes prepared with a phosphatidylcholine by fusion or substitution. 5. The breaks in the Arrhenius plots of adenylate cyclase activity are attributed to lipid phase separations which are shifted in the modified membranes according to the transition temperature of the synthetic phosphatidylcholine. Coupling the receptor to the enzyme by glucagon or des-His-glucagon renders the enzyme sensitive to the lipid environment of the receptor. Spin-label experiments support this interpretation and suggest that the lipid phase separation at 28.5 degrees C in the native membrane may only occur in one half of the bilayer.  相似文献   

19.
Basal as well as GTP-dependent adenylate cyclase activity was partially resistant to porcine pancreatic phospholipase A2, although more activity was degraded at 16 than at 2 degrees C. In contrast, isoproterenol-dependent activity was completely destroyed regardless of the temperature. Snake venom phospholipase A2 destroyed approximately 90% of basal and GTP-dependent adenylate cyclase activity at all temperatures. The difference between the lipases is consistent with earlier evidence that elevated temperature facilitates the entry of some forms of phospholipase into the membrane bilayer. The temperature dependence of adenylate cyclase activation by the GTP analog Gpp[NH]p and its pancreatic phospholipase sensitivity were compared. The Arrhenius plots were markedly similar and biphasic with discontinuities at approximately 8 degrees C. The same temperature-dependent phospholipid phase transition might account, therefore, for both adenylate cyclase properties. Only small amounts of membrane phosphatidylethanolamine and phosphatidic acid were hydrolyzed by pancreatic phospholipase in a temperature-dependent manner analogous to adenylate cyclase degradation. These results suggest that specific phospholipids support catalysis and adenylate cyclase activation, but that different phospholipids are required for receptor coupling which may occur in a less viscous part of the membrane.  相似文献   

20.
Treatment of human platelets with concentrations of benzyl alcohol up to 50 mM augmented adenylate cyclase activity when it was assayed in the basal state and when stimulated by prostaglandin E1 (PGE1), isoprenaline or NaF. Benzyl alcohol antagonized the stimulatory effect exerted on the catalytic unit of adenylate cyclase by the diterpene forskolin. Benzyl alcohol did not modify the magnitude of the inhibitory response when the catalytic unit of adenylate cyclase was inhibited by using either low concentrations of guanosine 5'-[beta gamma-imido]triphosphate, which acts selectively on the inhibitory guanine nucleotide-regulatory protein Gi, or during alpha 2-adrenoceptor occupancy, by using adrenaline (+ propranolol). Some 34% of the potent inhibitory action of adrenaline on PGE1-stimulated adenylate cyclase was obliterated in a dose-dependent fashion (concn. giving 50% inhibition = 12.5 mM) by benzyl alcohol, with the residual inhibitory action being apparently resistant to the action of benzyl alcohol at concentrations up to 50 mM. Treatment of membranes with benzyl alcohol did not lead to the release of either the alpha-subunit of Gi or G-protein subunits. The alpha 2-adrenoceptor-mediated inhibition of adenylate cyclase was abolished when assays were performed in the presence of Mn2+ rather than Mg2+ and, under such conditions, dose-effect curves for the action of benzyl alcohol on PGE1-stimulated adenylate cyclase activity were similar whether or not adrenaline (+propranolol) was present. We suggest that (i) alpha 2-adrenoceptor- and Gi-mediated inhibition of PGE1-stimulated adenylate cyclase may have two components, one of which is sensitive to inhibition by benzyl alcohol, and (ii) the Gi-mediated inhibition of forskolin-stimulated adenylate cyclase exhibits predominantly the benzyl alcohol-insensitive component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号