首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A detailed analysis of microsporogenesis was carried out in three diploid lily cultivars (2n=2x=24) and three diploid interspecific hybrids (2n=2x=24) using DNA in situ hybridisation methods (GISH and FISH). In cvs. Gelria (Lilium longiflorum; L genome), Connecticut King and Mont Blanc (both Asiatic hybrids; Agenome) meiosis was regular and only haploid gametes were formed while the three interspecific hybrids between L. longiflorum×Asiatic hybrid (LA) showed a variable frequency of meiotic nuclear restitution and stainable 2n-pollen formation ranging from 3% to 30%. An analysis of meiotic chromosome behaviour of the LA hybrids through GISH and FISH revealed that: (1) the parental chromosomes could be clearly discriminated into univalents, half-bivalents and bivalents in the PMCs; (2) in some of the PMCs the entire complement was present either as univalents or half-bivalents which had the potential to divide equationally (following centromere division) during the first division leading to first division restitution (FDR) gametes; (3) more frequently, however, in one and the same PMC the univalents and half-bivalents divided equationally whereas the bivalents disjoined reductionally at the same time giving rise to 2n-gametes that could vary from the well-known FDR or SDR 2n-gametes. We indicate this novel type of restitution mechanism as Indeterminate Meiotic Restitution (IMR). In order to confirm the occurrence of IMR gametes, the chromosome constitutions of eight triploid BC1 progenies derived from backcrossing the 2n-gamete producing the LAhybrids to the Asiatic hybrid parents were analysed through in situ hybridisation. The results indicated that there were seven BC1 plants in which FDR 2n-gametes, with or without homoeologous recombinations, were functional, whereas in one case the 2n-gamete resulting from IMR was functional. In the latter, there was evidence for the occurrence of genetic recombination through homoeologous crossing-over as well as through the assortment of homoeologous chromosomes. A singular feature of the IMR 2n-gamete was that although it transmitted a euploid number of 24 chromosomes to the BC1 progeny, the number of chromosomes transmitted from the two parental species was dissimilar: 9 L-genome chromosomes and 15 A-genome chromosomes instead of 12 of each. Received: 15 May 2000 / Accepted: 4 December 2000  相似文献   

2.
Summary The organelles of somatic hybrids obtained from symmetric and asymmetric fusions between the Lycopersicon species L. peruvianum and L. esculentum were analyzed by DNA hybridization methods. In the asymmetric fusions the L. peruvianum protoplasts were gamma-irradiated at a dose of 50, 300 and 1,000 Gy. The organelles were characterized using the Petunia chloroplast probe pPCY64 and the mitochondrial EcoRI-SalI fragment of the Pcf gene. In all symmetric and asymmetric hybrid plants, a total of 73 being analyzed, only one of the parental chloroplast genomes was present, except for one hybrid plant which harbored both parental chloroplast genomes. No recombination and/or rearrangement in the chloroplast genome could be identified with the pPCY64 probe. Irradiation of the L. peruvianum protoplasts did not significantly reduce the fraction of asymmetric hybrids with L. peruvianum chloroplasts. A novel mitochondrial restriction pattern was present in 5 out of 24 hybrids tested. In 9 hybrids novel combinations of chloroplasts and mitochondria were found, indicating that both organelle types sorted out independently.  相似文献   

3.
Intergenomic F1 hybrids between L. auratum x L. henryi and their BC1 progeny were investigated through genomic in situ hybridization technique (GISH) to determine their potential value in lily breeding. We confirmed that F1 intergenomic hybrids possessed a set of chromosomes (x=12) from both parents and that flowers of the F1 auratum × henryi hybrid showed an intermediate morphological phenotype. Pollen size, viability and germination ability were measured through microscopic observations. F1 intergenomic hybrids produced a relevant frequency of 2n-gametes, which were successfully used to perform crosses with Oriental hybrids, resulting in the triploid Oriental Auratum Henryi (OAuH) hybrid. Twenty BC1 plants were generated by crossing between four different Oriental hybrid cultivars and F1 AuH hybrids using an in vitro embryo rescue technique, after which the genome constitution and chromosome composition were analyzed by GISH. All plants were triploid, showing 12 from female parents (diploid Oriental hybrid) and 24 from male parents (diploid F1 AuH hybrid). Overall, 16 out of 20 BC1 progeny possessed recombinant chromosomes with 1-5 crossover sites per plant. Cytological analysis of 20 BC1 plants by GISH verified that the occurrence of 2n pollen formation in all F1 AuH hybrids was derived from the FDR (first division restitution) mechanism, in which the genome composition of all BC1 plants possess 12 Oriental + 12 L. auratum + 12 L. henryi chromosomes. Allotriploids derived from the AuH hybrid were used as female for crossing with the diploid Oriental hybrid cultivar ''Sorbonne'' and considerable numbers of plants (0-6.5 plants per ovary) were only obtained when female OAuH (BC1) triploids were used. Taken together, the results of this study indicate that production and analysis of F1 AuH hybrids and their progeny through sexual polyploidization can be useful for efficient creation of important horticultural traits.  相似文献   

4.
Summary Asymmetric somatic hybrids of Lycopersicon esculentum and Lycopersicon peruvianum were obtained by fusion of leaf protoplasts from both species after irradiation of protoplasts or leaf tissue of L. peruvianum with 50, 300, or 1,000 Gy of gamma-rays. These radiation doses were sufficient to abolish the growth of the L. peruvianum protoplasts. The hybrids were selected for their ability to regenerate plants; this regeneration capacity derived from L. peruvianum. All asymmetric hybrid plants were aneuploid. The ploidy level, the morphology, and the regeneration rate were analyzed in relation to the radiation dose applied to L. peruvianum. After a low dose (50 Gy), most hybrids had near-triploid chromosome numbers, whereas after a high dose (300 or 1,000 Gy), most hybrids had near-pentaploid numbers. The morphology of the asymmetric hybrids was intermediate between that of L. esculentum and symmetric somatic hybrids of both species (obtained without irradiation treatment), and approached the morphology of L. esculentum to a greater extent after a high dose of irradiation. The asymmetric hybrids regenerated more slowly than the symmetric hybrids and regeneration proceeded more slowly after a high dose than after a low dose of irradiation. The high-dose hybrids also grew more slowly, flowered less, and set fruits less than the low-dose hybrids. No seeds could be obtained from any asymmetric hybrid.  相似文献   

5.
The aim of the study was to characterize genomic relationships among cultivated tomato (Lycopersicon esculentum Mill.) (2n=2x=24) and diploid (2n=2x=24) non-tuberous wild Solanum species (S. etuberosum Lindl.). Using genomic in situ hybridization (GISH) of mitotic and meiotic chromosomes, we analyzed intergeneric somatic hybrids between tomato and S. etuberosum. Of the five somatic hybrids, two plants were amphidiploids (2n=4x=48) mostly forming intragenomic bivalents in their microsporocytes, with a very low frequency of multivalents involving the chromosomes of tomato and S. etuberosum (less than 0.2 per meiocyte). Tomato chromosomes showed preferential elimination during subsequent meiotic divisions of the amphidiploids. Transmission of the parental chromosomes into microspores was also evaluated by GISH analysis of androgenic plants produced by direct embryogenesis from the amphidiploid somatic hybrids. Of the four androgenic regenerants, three were diploids (2n=2x=24 or 2n=2x+1=25) derived from reduced male gametes of the somatic hybrids, and one plant was a hypertetraploid (2n=4x+4=52). GISH revealed that each anther-derived plant had a unique chromosome composition. The prospects for introgression of desirable traits from S. etuberosum into the gene pool of cultivated tomato are discussed. Received: 2 August 2000 / Accepted: 4 December 2000  相似文献   

6.
An F1 hybrid (n=4x=28) between the tetraploid species Festuca arundinacea var. glaucescens (GGG′G′) and a synthetic tetraploid Lolium multiflorum (LmLmLmLm) was backcrossed to diploid L. multiflorum to produce triploid (2n=3x=21) BC1 hybrids (LmLmG). At metaphase I of meiosis the triploids had a preponderance of ring bivalents and univalents with some linear and frying-pan trivalents. Genomic in situ hybridisation (GISH) differentiated the Festuca chromosomes from Lolium and revealed that the bivalents were exclusively between Lolium homologues, while the univalents were Festuca. Despite the limited amount of homoeologous chiasmata pairing in the triploids, some recombinant chromosomes were recovered in the second backcross when the hybrids were further crossed to diploid L. multiflorum. The progeny from the second backcross was predominantly diploid. Genotypes with recombinant chromosomes and chromosome additions involving an extra Festuca chromosome were identified using GISH. Changes in plant phenotype were related to the presence of Festuca chromatin. Received: 20 September 2000 / Accepted: 05 January 2001  相似文献   

7.
To estimate the extent and position of homoeologous recombination during meiosis in an interspecific hybrid between two distantly related Alstroemeria species, the chromosome constitution of six first generation backcross (BC1) plants was analysed using sequential fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH) analysis. Four different probes were used for the FISH analysis: two species-specific and two rDNA probes. The six BC1 plants were obtained from crosses between the hybrid A. aurea×A. inodora with its parent A. inodora. GISH clearly identified all chromosomes of both parental genomes as well as recombinant chromosomes. The sequential GISH and FISH analysis enabled the accurate identification of all individual chromosomes in the BC1 plants, resulting in the construction of detailed karyotypes of the plants. The identification of the recombinant chromosomes provided evidence which chromosomes of the two species are homoeologous. Two of the BC1 plants were aneuploid (2n=2x+1=17) and four triploid (2n=3x=24), indicating that both n and 2n gametes were functional in the F1 hybrid. Using GISH, it was possible to estimate homeologous recombination in two different types of gametes in the F1 hyrid. The positions of the crossover points ranged from highly proximal to distal and the maximum number of crossover points per chromosome arm was three. Compared with the aneuploid plants, the triploid plants (which received 2n gametes) clearly possessed fewer crossovers per chromosome, indicating reduced chromosome pairing/recombination prior to the formation of the 2n gametes. Besides homeologous recombination, evidence was found for the presence of structural rearrangements (inversion and translocation) between the chromosomes of the parental species. The presence of the ancient translocation was confirmed through FISH analysis of mitotic and meiotic chromosomes. Received: 7 October 1998; in revised form: 4 December 1998 / Accepted: 10 December 1998  相似文献   

8.
The backcross progenies of the barley–wheat hybrids Hordeum vulgare L. (2n = 14) × Triticum aestivum L. (2n= 42) and two alloplasmic lines derived from them were studied using microsatellite markers of barley and wheat. The F1 hybrids and first backcross plants BC1 contained the genetic material of both cultivated barley and the cultivars of common wheat involved in developing of these hybrid genotypes. The genomes of BC3, BC4, and alloplasmic lines contained no microsatellite markers of the cultivated barley, whereas chromosomes of each homeologous group of common wheat were identified. In chromosomes of backcross progenies BC3, BC4, and alloplasmic lines yielded by backcrosses of hybrids and various common wheat cultivars, microsatellite markers of the parental wheat cultivars were shown to undergo recombination.  相似文献   

9.
Summary Using a modified embryo callus culture technique, hybrids between Lycopersicon esculentum and L. peruvianum were developed and their usefulness as bridge lines for facilitating interspecific gene transfer was evaluated. Four of these lines showed a high level of sexual compatibility with several other L. peruvianum var. typicum accessions, as well as with accessions of L. peruvianum var. humifusum and L. peruvianum var. glandulosum and L. esculentum. These bridge line x L. peruvianum hybrids could be crossed with L. esculentum to introgress genes from L. peruvianum into L. esculentum.  相似文献   

10.
 Segregation of the Lycopersicon peruvianum genome was followed through three generations of backcrossing to the cultivated tomato L. esculentum cv ‘E6203’ using molecular markers. Thirteen BC1 plants were genotyped with 113 markers, 67 BC2 plants with 84 markers, and finally 241 BC3 plants were genotyped with 177 markers covering the entire genome and a BC3 map constructed. Several segments of the genome, including parts of chromosomes 3, 4, 6, and 10, quickly became fixed for esculentum alleles, possibly due to sterility problems encountered in the BC1. Observed overall heterozygosity and chromosome segment lengths at each generation were very near the expected theoretical values. Markers located near the top telomeric region of chromosome 9 showed segregation highly skewed towards the wild allele through all generations, suggesting the presence of a gamete promoter gene. One markers, TG9, mapped to a new position on chromosome 9, implying an intrachromosomal translocation event. Despite the great genetic distance between the two parents, overall recombination was only 25% less than that observed in a previous tomato cross, indicating that L. peruvianum genes may be more readily introgressed into cultivated germplasm than originally believed. Received: 9 April 1997 / Accepted : 20 May 1997  相似文献   

11.
 The cytoplasmic male-sterile (CMS) line CMS-pennellii (BC10P2 L. peruvianum×L. pennellii) and its complex hybrids with L. esculentum were studied. The established sterility was classified as the sporogenous type. As a result of the interaction of the genome of L. pennellii and the cytoplasm of L. peruvianum clear changes were established in the profiles of malic enzyme and esterase. Restriction fragment length polymorphism (RFLP) was detected between the mitochondrial (mt) genomes of CMS-pennellii and the cytoplasm donor, L. peruvianum, for two mtDNA probes: atpA and nad3. The established differences in the isozyme pattern and mt genomes are considered as useful markers to distinguish fertile and sterile plants. A breakthrough in the unilateral incompatibility of CMS-pennellii and the incorporation of the genome of L. esculentum on a CMS background is reported. The analysis of the complex hybrids assumes the interaction of two dominant genes – a maintainer gene from L. pennellii and a restorer gene from cultivated tomato. The hybrids produced with L. esculentum provide the basis for the development of a CMS system in cultivated tomato. Received: 25 May 1998 / Accepted: 26 August 1998  相似文献   

12.
Wang GX  Tang Y  Yan H  Sheng XG  Hao WW  Zhang L  Lu K  Liu F 《Plant cell reports》2011,30(10):1811-1821
Somatic hybridization is a potential method for gene transfer from wild relatives to cultivated crops that can overcome sexual incompatibilities of two distantly related species. In this study, interspecific asymmetric somatic hybrids of Brassica oleracea var. botrytis (cauliflower) and Brassica nigra (black mustard) were obtained by protoplast fusion and their backcrossed (BC3) and selfed (S3) offspring were analyzed. Cytological analysis showed that the B. nigra chromosomes were successively eliminated in the backcrosses with cauliflower. The fertility of the hybrid progenies was quite different due to the asynchronous and abnormal chromosome behavior of pollen mother cells (PMC) during meiosis. Analysis of sequence-related amplified polymorphism (SRAP) showed that all of these hybrids mainly had the DNA banding pattern from the two parents with some alterations. Genetically, the selfed generations were closer to B. nigra, while the backcrossed generations were closer to the cauliflower parent. Analysis of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLP) showed that all somatic hybrids in this study contained chloroplast (cp) DNA of the donor parent black mustard, while mitochondrial (mt) DNA showed evidence of recombination and variations in the regions analyzed. Furthermore, three BC3 plants (originated from somatic hybrids 3, 4, 10) with 2–8 B. nigra-derived chromosomes shown by genomic in situ hybridization (GISH) displayed a more cauliflower-like morphology and high resistance to black-rot. These plants were obtained as bridge materials for further analysis and breeding.  相似文献   

13.
Intergeneric somatic hybridization between Brassica napus and Raphanus sativus was carried out to enrich gene pool of B. napus. Twelve somatic hybrids were produced via PEG-mediated protoplast fusion between B. napus and R. sativus. The hybridity was confirmed by morphological observation and molecular marker analysis. Hybrid progenies (BC1) were obtained via backcrosses with B. napus. Behaviour of R. sativus chromosomes in a B. napus background in the F1 and BC1 plants was revealed by genomic in situ hybridization (GISH). The potential of somatic hybridization to enrich the suitable gene pool for rapeseed breeding is discussed.  相似文献   

14.
Summary Accessions of eight Lycopersicon species and five yellow-flowered Solanum species were used as males in crosses with 2x and 4x L. esculentum to observe seed set and progeny ploidy. Species which failed in crosses to L. esculentum were crossed as males to 2x and 4x L. peruvianum. In cases of low seed set, chromosome counts were undertaken to establish the nature of the progeny. Endosperm Balance Number (EBN) relationships were determined for the crossability groups. Results support the basic concept of an L. esculentum crossability complex and an L. peruvianum crossability complex. Within the L. esculentum complex, all EBNs appear identical with a value of 2. Within the L. peruvianum complex, more variability appears to exist. The EBN values of this group are higher, and may be approximately double those of the L. esculentum complex. The EBN of L. peruvianum var humifusum appears to be somewhat lower than other L. peruvianum types. The EBN values of S. lycopersicoides, S. rickii, S. ochranthum and S. juglandtfolium could not be determined experimentally. Differential aspects of Lycopersicon and tuber-bearing Solanum evolution may be interpreted on the basis of endosperm compatibility.Co-operative investigation of the Vegetable Crops Research Unit, U.S. Department of Agriculture, Agricultural Research Service, and the Wisconsin Agricultural Experiment Station  相似文献   

15.
Summary Mesophyl protoplasts of two genotypes of cultivated tomato (Lycopersicon esculentum Mill.) and one of its wild relative species (Lycopersicon peruvianum Mill.) were fused by using electrofusion and polyethyleneglycol-induced fusion. Forty-three fertile tetraploid somatic hybrid plants, each deriving from separate calli, were recovered from both fusion procedures. Electrofusion appeared more efficient than chemical fusion for the production of somatic hybrids. These plants appeared morphologically similar, whatever the fusion procedure and tomato genotype. They had intermediate leaf, inflorescence, and flower morphology. After self-pollination, the hybrids set fruit of intermediate size and color. The hybrid nature of these plants was confirmed by isoelectric focusing of the Rubisco small subunits used as nuclear markers. L. esculentum and L. peruvianum were distinguished by means of two chloroplast markers: CF1-ATPase subunit as analyzed by isoelectro-focusing and ct DNA restriction patterns. All hybrids displayed both ct markers of only one parent with no biased transmission. Mitochondrial (mt) DNAs were prepared from flower buds by using miniaturized CsCl gradients. Preliminary analysis indicated that mt genomes from the hybrids all differed from those of both parents. mt DNA Sall restriction enzyme analysis revealed that all but two hybrids contained one novel fragment of 13.5 kb. Gene mapping experiments showed that the mt apocytochrome b and ATPase subunit 9 homologies in the somatic hybrid mt DNA resembled L. esculentum and L. peruvianum, respectively; the mt nad5 probe distinguished at least four distinct patterns in the hybrids. These results indicated that mt DNA rearrangements involving intergenomic recombinations occurred through protoplast fusion. A greater mt DNA polymorphism was induced with chemical fusion than with electrofusion.  相似文献   

16.
The amount of recombination in three different intraspecific crosses of the wild tomato species Lycopersicon peruvianum was investigated for the short arm of chromosome 6 that harbors the Mi nematode resistance gene and the centromeric region of chromosome 9 that contains the Tm2a virus resistance gene. These two genes have been introgressed into the cultivated tomato and are associated with a significant reduction in recombination in the respective region when crossed to other L. esculentum lines. For both regions and all crosses within L. peruvianum significantly more recombination (up to more than ten fold) was observed in the gametes derived from the female parent than in those from the male parent. In general, the differences were more pronounced for chromosome 6 than for chromosome 9. The amount of recombination in the three intraspecific L. peruvianum crosses was compared with the amount of recombination observed in the standard interspecific cross used for the construction of a saturated genetic map of tomato (L. esculentum x L. pennellii). In two of three cases for each region, more recombination was observed in the intraspecific crosses and in one case for each region significantly less recombination was found in the intraspecific cross when compared to the interspecific cross. Specifically for the Mi-carrying region, crosses within L. peruvianum exhibited up to 15-fold more recombination than crosses between resistant and susceptible L. esculentum lines, and such crosses will allow the fine mapping of this gene for the purpose of map-based cloning.  相似文献   

17.
Summary Asymmetric somatic hybrids of Lycopersicon esculentum and Lycopersicon peruvianum were analysed for the retention of genes and alleles specific for L. peruvianum. The hybrids were obtained by fusion of protoplasts from L. esculentum with those of L. peruvianum (the donor), the latter having been irradiated before fusion with 50, 300 or 1,000 Gy of gamma-rays. The retention of three different types of genes or alleles was analysed. (1) The gene coding for kanamycin resistance, which is dominant and had been introduced in most of the L. peruvianum donor plants by transformation. It was present at one locus in 16 L. peruvianum donor plants and at two loci in one donor plant. (2) The genes coding for acid phosphatase, locus Aps-1, and glutamate oxaloacetate transaminase (GOT); different alleles of these genes are co-dominant and were detected by isozyme analysis. (3) Eighteen single gene morphological markers for which most of the L. esculentum genotypes used were homozygous recessive. Kanamycin resistance from donor plants with one locus was retained in about 50% of the asymmetric 30H-hybrids (the donor was irradiated with 300 Gy). L. peruvianum specific alleles of Aps-1 and GOT were present in at least 70% of the hybrids; the retention of donor alleles was lower in 30H- than in 5H-hybrids (donor irradiated with 50 Gy). On average, 73% of the L. peruvianum-specific alleles (one or both) of the morphological markers were detected in the 30H-hybrids. Several of the L. esculentum genotypes used were homozygous recessive for two morphological markers on the same chromosome; in 43% of the 30H-hybrids derived from them, only one of these markers was complemented by the L. peruvianum allele. This is an indication of frequent breakage of the L. peruvianum chromosomes. Several hybrid calli regenerated genotypically different shoots. On the whole, this analyses confirms the conclusion drawn from the cytogenetic and morphological analysis of these asymmetric hybrids, namely that irradiation prior to fusion eliminates the L. peruvianum genome to only a limited extent.  相似文献   

18.
Solanum tarnii, a wild diploid, tuber-bearing Mexican species belonging to the series Pinnatisecta is highly resistant to Potato virus Y (PVY) and Colorado potato beetle and shows a strong hypersensitive reaction to Phytophthora infestans. Therefore, it could be a potential source of resistance to pathogens for potato breeders. S. tarnii (2n = 2x = 24) is reproductively isolated from tetraploid Solanum tuberosum and hence difficult to include in potato breeding programmes. In this study, interspecific somatic hybrids were produced for the first time by protoplast electrofusion of the cells of potato cv. Delikat (Solanum tuberosum L.) and Solanum tarnii. The hybrid nature of the regenerants was confirmed by simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers and by morphological analysis and flow cytometry. Selected somatic hybrids were successfully backcrossed with cv. Delikat. Parental lines, primary somatic hybrids and BC1 progeny were assessed for resistance to PVY by mechanical inoculation, grafting and exposure to viruliferous aphid vectors in the field, and resistance to late blight (P. infestans) by detached leaflet and whole tuber tests. The somatic hybrids showed no symptoms of viral infection and most of them displayed high levels of resistance to foliage blight. The BC1 progenies were highly resistant to PVY and a few were resistant to foliage blight. Selected hybrids and BC1 clones were evaluated in the field for tuber quality and tuber yield. Some BC1 clones produced yields of good quality tubers. The results confirm that both the resistance to PVY and to late blight of S. tarnii is expressed in somatic hybrids, and PVY resistance is transferred to BC1 progeny, whereas blight resistance is harder to transfer. Somatic hybridization again proved to be a valuable tool for producing pre-breeding material with increased genetic diversity.  相似文献   

19.
Lycopersicon peruvianum LA2172 is completely resistant to Oidium neolycopersici, the causal agent of tomato powdery mildew. Despite the large genetic distance between the cultivated tomato and L. peruvianum, fertile F1 hybrids of L. esculentum cv. Moneymaker × L. peruvianum LA2172 were produced, and a pseudo-F2 population was generated by mating F1 half-sibs. The disease tests on the pseudo-F2 population and two BC1 families showed that the resistance in LA2172 is governed by one dominant gene, designated as Ol-4. In the pseudo-F2 population, distorted segregation was observed, and multi-allelic, single-locus markers were used to display different marker-allele configurations per locus. Parameters for both distortion and linkage between genetic loci were determined by maximum likelihood estimation, and the necessity of using multi-allelic, single-locus markers was illustrated. Finally, a genetic linkage map of chromosome 6 around the Ol-4 locus was constructed by using the pseudo-F2 population.  相似文献   

20.
 A detailed map of part of the short arm of chromosome 1 proximal to the Cf-4/Cf-9 gene cluster was generated by using an F2 population of 314 plants obtained from the cross between the remotely related species Lycopersicon esculentum and L. peruvianum. Six markers that cosegregate in an L. esculentum×L. pennellii F2 population showed high recombination frequencies in the present interspecific population, spanning an interval of approximately 13 cM. Physical distances between RFLP markers were estimated by pulsed field gel electrophoresis of high-molecular-weight DNA and by identifying YACs that recognized more than one RFLP marker. In this region 1 cM corresponded to 55–110 kb. In comparsion with the value of 730 kb per cM averaged over the entire genome, this reflects the remarkably high recombination frequencies in this region in the hybrid L. esculentum×L. peruvianum progeny population. The present data underline the fact that recombination is not a process that occurs randomly over the entire genome, but can vary dramatically in intensity between chromosomal regions and among populations. Received: 20 May 1996 / Accepted: 10 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号