首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total viable aerobic, heterotrophic bacteria, total coliforms, fecal coliforms, and fecal streptococci were enumerated in samples collected at five stations located in the Upper Chesapeake Bay, December 1973 through December 1974. Significant levels of pollution indicator organisms were detected at all of the stations sampled. Highest counts were observed in samples collected at the confluence of the Susquehanna River and the Chesapeake Bay. The indicator organisms examined were observed to be quantitatively distributed independently of temperature and salinity. Counts were not found to be correlated with concentration of suspended sediment. However, significant proportions of both the total viable bacteria (53%) and fecal indicator organisms (>80%) were directly associated with suspended sediments. Correlation coefficients (r) for the indicator organisms examined in this study ranged from r = 0.80 to r = 0.99 for bottom water and suspended sediment, respectively. Prolonged survival of fecal streptococci in most of the sediment samples was observed, with concomitant reduction of the correlation coefficient from r = 0.99, fecal streptococci to total coliforms in water, to r = 0.01, fecal streptococci to fecal coliforms in sediments. The results of this study compared favorably with fecal coliforms: fecal streptococci ratios for the various sample types. Characterization of organisms beyond the confirmed most-probable-number procedure provided good correlation between bacterial indicator groups.  相似文献   

2.
3.
McMurdo Station, Antarctica, has discharged untreated sewage into McMurdo Sound for decades. Previous studies delineated the impacted area, which included the drinking water intake, by using total coliform and Clostridium perfringens concentrations. The estimation of risk to humans in contact with the impacted and potable waters may be greater than presumed, as these microbial indicators may not be the most appropriate for this environment. To address these concerns, concentrations of these and additional indicators (fecal coliforms, Escherichia coli, enterococci, coliphage, and enteroviruses) in the untreated wastewater, water column, and sediments of the impacted area and drinking water treatment facility and distribution system at McMurdo Station were determined. Fecal samples from Weddell seals in this area were also collected and analyzed for indicators. All drinking water samples were negative for indicators except for a single total coliform-positive sample. Total coliforms were present in water column samples at higher concentrations than other indicators. Fecal coliform and enterococcus concentrations were similar to each other and greater than those of other indicators in sediment samples closer to the discharge site. C. perfringens concentrations were higher in sediments at greater distances from the discharge site. Seal fecal samples contained concentrations of fecal coliforms, E. coli, enterococci, and C. perfringens similar to those found in untreated sewage. All samples were negative for enteroviruses. A wastewater treatment facility at McMurdo Station has started operation, and these data provide a baseline data set for monitoring the recovery of the impacted area. The contribution of seal feces to indicator concentrations in this area should be considered.  相似文献   

4.
A nested-PCR method was used to detect the occurrence of human adenovirus in coastal waters of Southern California. Twenty- to forty-liter water samples were collected from 12 beach locations from Malibu to the border of Mexico between February and March 1999. All sampling sites were located at mouths of major rivers and creeks. Two ultrafiltration concentration methods, tangential flow filtration (TFF) and vortex flow filtration (VFF), were compared using six environmental samples. Human adenoviruses were detected in 4 of the 12 samples tested after nucleic acid extraction of VFF concentrates. The most probable number of adenoviral genomes ranged from 880 to 7,500 per liter of water. Coliphages were detected at all sites, with the concentration varying from 5.3 to 3332 PFU/liter of water. F-specific coliphages were found at 5 of the 12 sites, with the concentration ranging from 5.5 to 300 PFU/liter. The presence of human adenovirus was not significantly correlated with the concentration of coliphage (r = 0.32) but was significantly correlated (r = 0.99) with F-specific coliphage. The bacterial indicators (total coliforms, fecal coliforms, and enterococci) were found to exceed California recreational water quality daily limits at 5 of the 12 sites. However, this excess of bacterial indicators did not correlate with the presence of human adenoviruses in coastal waters. The results of this study call for both a reevaluation of our current recreational water quality standards to reflect the viral quality of recreational waters and monitoring of recreational waters for human viruses on a regular basis.  相似文献   

5.
The presence of Salmonella and its relationship with indicator organisms of fecal pollution, such as total coliforms, fecal coliforms and fecal streptococci, was studied at two marine zones in Portugal. Seventeen different Salmonella serotypes were isolated and identified, S. virchow was the most frequently isolated (21.6%). In addition, a high percentage (35.1%) was recorded for some Salmonella serotypes of clinical significance, namely S. enteritidis, S. infantis, S. typhimurium and S. virchow. In any of the samples from the two zones Salmonella was not detected in the absence of any of the indicator organisms. However, the incidence of Salmonella as a function of indicator concentration intervals established by the EEC standards was 0, 10 and 19.3% at guide values of total coliforms, fecal coliforms and fecal streptococci, respectively in the Faro samples (south of Portugal). In contrast, Salmonella incidence rates of 37.5, 36.4 and 33.3% were recorded at the corresponding guide values the Caminha samples (north of Portugal). No significant correlations (p>0.005) were obtained between Salmonella and the indicators at the sampling stations; however, total coliforms and fecal streptococci were the indicators most closely related to Salmonella in Caminha and Faro samples, respectively. Survival experiments in Escherichia coli, Enterococcus faecalis and S. typhimurium, using diffusion chambers, were performed to verify whether the lack of correlation between indicators and Salmonella was due to different inactivation rates in seawater. The results indicate that survival percentages of the three microorganisms tested were similar after 48 h of exposure to seawater.  相似文献   

6.
Current standards for evaluation of the public health safety of recreational and shellfish-harvesting waters are based upon bacteriological analysis, but do not include an evaluation of the number of viruses. The objective of this study was to determine the occurrence of enteric viruses in estuarine sediments and to find a relationship, if any, between the presence of viruses in seawater or sediment or both and various biological and physicochemical characteristics of the environment. Viruses were found in greater numbers in sediment than in overlying seawater on a volume basis. Several types of enteroviruses were isolated: coxsackievirus types A16, B1, and B5, echovirus type 1, and poliovirus type 2. On several occasions, viruses were isolated from sediments when overlying seawaters met bacteriological water quality standards for recreational use. Statistical analysis of the relationship between viruses in seawater or in sediment and other variables measured yielded only one significant association: the number of viruses in sediment was found to be positively correlated with the number of fecal coliforms in sediment. No other physical, chemical, or biological characteristic of seawater or sediment that was measured showed statistically significant association with viral numbers. No correlation was found between bacterial indicators and virus in the overlying waters. The data indicated that evaluation of the presence of bacteria and viruses in sediment may provide additional insight into long-term water quality conditions and that indicator bacteria in water are not reflective of the concentration of enteric viruses in marine waters.  相似文献   

7.
Bacteriophages are the most abundant and genetically diverse viruses on Earth, with complex ecology in both quantitative and qualitative terms. Somatic coliphages (SC) have been reported to be good indicators of fecal pollution in seawater. This study focused on determining the concentration of SC and their diversity by electron microscopy of seawater, plankton, and bivalve samples collected at three coastal regions in São Paulo, Brazil. The SC counts varied from <1 to 3.4 × 103 PFU/100 ml in seawater (73 samples tested), from <1 to 4.7 × 102 PFU/g in plankton (46 samples tested), and from <1 to 2.2 × 101 PFU/g in bivalves (11 samples tested). In seawater samples, a relationship between the thermotolerant coliforms and Escherichia coli and SC was observed at the three regions (P = 0.0001) according to the anthropogenic activities present at each region. However, SC were found in plankton samples from three regions: Baixada Santista (17/20), Canal de São Sebastião (6/14), and Ubatuba (3/12). In seawater samples collected from Baixada Santista, four morphotypes were observed: A1 (4.5%), B1 (50%), C1 (36.4%), and D1 (9.1%). One coliphage, Siphoviridae type T1, had the longest tail: between 939 and 995 nm. In plankton samples, Siphoviridae (65.8%), Podoviridae (15.8%), Microviridae (15.8%), and Myoviridae (2.6%) were found. In bivalves, only the morphotype B1 was observed. These SC were associated with enteric hosts: enterobacteria, E. coli, Proteus, Salmonella, and Yersinia. Baixada Santista is an area containing a high level of fecal pollution compared to those in the Canal de São Sebastião and Ubatuba. This is the first report of coliphage diversity in seawater, plankton, and bivalve samples collected from São Paulo coastal regions. A better characterization of SC diversity in coastal environments will help with the management and evaluation of the microbiological risks for recreation, seafood cultivation, and consumption.  相似文献   

8.
Sunlight inactivation rates of somatic coliphages, F-specific RNA bacteriophages (F-RNA phages), and fecal coliforms were compared in seven summer and three winter survival experiments. Experiments were conducted outdoors, using 300-liter 2% (vol/vol) sewage-seawater mixtures held in open-top chambers. Dark inactivation rates (kDs), measured from exponential survival curves in enclosed (control) chambers, were higher in summer (temperature range: 14 to 20°C) than in winter (temperature range: 8 to 10°C). Winter kDs were highest for fecal coliforms and lowest for F-RNA phages but were the same or similar for all three indicators in summer. Sunlight inactivation rates (kS), as a function of cumulative global solar radiation (insolation), were all higher than the kDs with a consistent kS ranking (from greatest to least) as follows: fecal coliforms, F-RNA phages, and somatic coliphages. Phage inactivation was exponential, but bacterial curves typically exhibited a shoulder. Phages from raw sewage exhibited kSs similar to those from waste stabilization pond effluent, but raw sewage fecal coliforms were inactivated faster than pond effluent fecal coliforms. In an experiment which included F-DNA phages and Bacteroides fragilis phages, the kS ranking (from greatest to least) was as follows: fecal coliforms, F-RNA phages, B. fragilis phages, F-DNA phages, and somatic coliphages. In a 2-day experiment which included enterococci, the initial concentration ranking (from greatest to least: fecal coliforms, enterococci, F-RNA phages, and somatic coliphages) was reversed during sunlight exposure, with only the phages remaining detectable by the end of day 2. Inactivation rates under different optical filters decreased with the increase in spectral cutoff wavelength (50% light transmission) and indicated that F-RNA phages and fecal coliforms are more susceptible than somatic coliphages to longer solar wavelengths, which predominate in seawater. The consistently superior survival of somatic coliphages in our experiments suggests that they warrant further consideration as fecal, and possibly viral, indicators in marine waters.  相似文献   

9.
10.
11.
Quantities of combined chlorine that usually destroyed more than 99.999% of the indigenous fecal coliforms, total coliforms, and fecal streptococci in primary sewage effluents destroyed only 85 to 99% of the indigenous viruses present. Viruses were recovered from five of eight chlorinated primary effluents from which fecal coliforms were not recovered by standard most-probable-number procedures. The limited volumes of such chlorinated effluents that can be tested for indicator bacteria with currently available multiple-tube and membrane filter techniques restrict the value of fecal coliforms, fecal streptococci, and even total coliforms as indicators of viruses in these effluents. Although fecal coliforms and fecal streptococci are useful indicators of viruses in effluents from which these bacteria are recovered, the absence of these bacteria and even total coliforms from disinfected effluents (in standard tests) does not assure that viruses are also absent.  相似文献   

12.
Sunlight inactivation in fresh (river) water of fecal coliforms, enterococci, Escherichia coli, somatic coliphages, and F-RNA phages from waste stabilization pond (WSP) effluent was compared. Ten experiments were conducted outdoors in 300-liter chambers, held at 14°C (mean river water temperature). Sunlight inactivation (kS) rates, as a function of cumulative global solar radiation (insolation), were all more than 10 times higher than the corresponding dark inactivation (kD) rates in enclosed (control) chambers. The overall kS ranking (from greatest to least inactivation) was as follows: enterococci > fecal coliforms ≥ E. coli > somatic coliphages > F-RNA phages. In winter, fecal coliform and enterococci inactivation rates were similar but, in summer, enterococci were inactivated far more rapidly. In four experiments that included freshwater-raw sewage mixtures, enterococci survived longer than fecal coliforms (a pattern opposite to that observed with the WSP effluent), but there was little difference in phage inactivation between effluents. In two experiments which included simulated estuarine water and seawater, sunlight inactivation of all of the indicators increased with increasing salinity. Inactivation rates in freshwater, as seen under different optical filters, decreased with the increase in the spectral cutoff (50% light transmission) wavelength. The enterococci and F-RNA phages were inactivated by a wide range of wavelengths, suggesting photooxidative damage. Inactivation of fecal coliforms and somatic coliphages was mainly by shorter (UV-B) wavelengths, a result consistent with photobiological damage. Fecal coliform repair mechanisms appear to be activated in WSPs, and the surviving cells exhibit greater sunlight resistance in natural waters than those from raw sewage. In contrast, enterococci appear to suffer photooxidative damage in WSPs, rendering them susceptible to further photooxidative damage after discharge. This suggests that they are unsuitable as indicators of WSP effluent discharges to natural waters. Although somatic coliphages are more sunlight resistant than the other indicators in seawater, F-RNA phages are the most resistant in freshwater, where they may thus better represent enteric virus survival.  相似文献   

13.
14.
Quantities of combined chlorine that usually destroyed more than 99.999% of the indigenous fecal coliforms, total coliforms, and fecal streptococci in primary sewage effluents destroyed only 85 to 99% of the indigenous viruses present. Viruses were recovered from five of eight chlorinated primary effluents from which fecal coliforms were not recovered by standard most-probable-number procedures. The limited volumes of such chlorinated effluents that can be tested for indicator bacteria with currently available multiple-tube and membrane filter techniques restrict the value of fecal coliforms, fecal streptococci, and even total coliforms as indicators of viruses in these effluents. Although fecal coliforms and fecal streptococci are useful indicators of viruses in effluents from which these bacteria are recovered, the absence of these bacteria and even total coliforms from disinfected effluents (in standard tests) does not assure that viruses are also absent.  相似文献   

15.
16.
The validity of using indicator organisms (total and fecal coliforms, enterococci, Clostridium perfringens, and F-specific coliphages) to predict the presence or absence of pathogens (infectious enteric viruses, Cryptosporidium, and Giardia) was tested at six wastewater reclamation facilities. Multiple samplings conducted at each facility over a 1-year period. Larger sample volumes for indicators (0.2 to 0.4 liters) and pathogens (30 to 100 liters) resulted in more sensitive detection limits than are typical of routine monitoring. Microorganisms were detected in disinfected effluent samples at the following frequencies: total coliforms, 63%; fecal coliforms, 27%; enterococci, 27%; C. perfringens, 61%; F-specific coliphages, ~40%; and enteric viruses, 31%. Cryptosporidium oocysts and Giardia cysts were detected in 70% and 80%, respectively, of reclaimed water samples. Viable Cryptosporidium, based on cell culture infectivity assays, was detected in 20% of the reclaimed water samples. No strong correlation was found for any indicator-pathogen combination. When data for all indicators were tested using discriminant analysis, the presence/absence patterns for Giardia cysts, Cryptosporidium oocysts, infectious Cryptosporidium, and infectious enteric viruses were predicted for over 71% of disinfected effluents. The failure of measurements of single indicator organism to correlate with pathogens suggests that public health is not adequately protected by simple monitoring schemes based on detection of a single indicator, particularly at the detection limits routinely employed. Monitoring a suite of indicator organisms in reclaimed effluent is more likely to be predictive of the presence of certain pathogens, and a need for additional pathogen monitoring in reclaimed water in order to protect public health is suggested by this study.  相似文献   

17.
Current standards for evaluation of the public health safety of recreational and shellfish-harvesting waters are based upon bacteriological analysis, but do not include an evaluation of the number of viruses. The objective of this study was to determine the occurrence of enteric viruses in estuarine sediments and to find a relationship, if any, between the presence of viruses in seawater or sediment or both and various biological and physicochemical characteristics of the environment. Viruses were found in greater numbers in sediment than in overlying seawater on a volume basis. Several types of enteroviruses were isolated: coxsackievirus types A16, B1, and B5, echovirus type 1, and poliovirus type 2. On several occasions, viruses were isolated from sediments when overlying seawaters met bacteriological water quality standards for recreational use. Statistical analysis of the relationship between viruses in seawater or in sediment and other variables measured yielded only one significant association: the number of viruses in sediment was found to be positively correlated with the number of fecal coliforms in sediment. No other physical, chemical, or biological characteristic of seawater or sediment that was measured showed statistically significant association with viral numbers. No correlation was found between bacterial indicators and virus in the overlying waters. The data indicated that evaluation of the presence of bacteria and viruses in sediment may provide additional insight into long-term water quality conditions and that indicator bacteria in water are not reflective of the concentration of enteric viruses in marine waters.  相似文献   

18.
We have investigated how indices of beach health perform in predicting the abundances of the crustaceans Emerita brasiliensis and Atlantorchestoidea brasiliensis from 22 metropolitan beaches in the cities of Rio de Janeiro and Niterói. Urbanization, Recreation and Conservation indices were used to assess sandy beaches health. Grain size and beach slope were used as morphodynamics indicators. Diagram from the principal component analysis clearly separated beaches with different urbanization and conservation levels. Generalized additive models (GAM's) were adjusted for species abundance using the indices and morphodynamic parameters as explanatory variables. Lower abundances were predicted for beaches with high levels of urbanization, whereas predictions of higher abundances occurred on beaches with high conservation levels. Using theoretic inference we showed that the urbanization index was the most important predictor for abundance of A. brasiliensis and the conservation index was the most important predictor for E. brasiliensis, reflecting different responses by upper tidal and intertidal species. A. brasiliensis occupies the intermediate and upper beach zones and E. brasiliensis is a swash zone filter-feeder that is more abundant in pristine beaches. Both species are highly subject to the impact of bathers and coastal modification. Unexpected, the recreation index did not show a negative effect on abundance predictions. Urbanization and conservation indices can be suitable metrics to measure anthropogenic effects on macrobenthic species. Moreover, mole crabs and sandhoppers species can be easily monitored. Coastal urbanization is a global phenomenon and we used the diagram of urbanization and conservation levels to expose possible directions for management strategies of metropolitan sandy beaches.  相似文献   

19.
The occurrence of Pseudomonas aeruginosa and coagulase-positive Staphylococcus aureus in seawater from beaches of central Israel was investigated from June 1983 until June 1985. P. aeruginosa was monitored in 652 samples of seawater from 34 beaches, and S. aureus was monitored in 628 samples. P. aeruginosa was found in 44.8% of samples (6.5% with 1 bacterium per 100 ml of water), and S. aureus was recovered from 60.7% of samples (5.3% with 1 organism per 100 ml), compared with 91.6% of samples with total coliforms (TC) and 82.2% with fecal coliforms (FC). The correlation between the presence of P. aeruginosa to that of TC and FC was 99.1 and 98.3%, respectively, while S. aureus was found in 4.3 and 8% of samples where TC and FC, respectively, were absent. Monitoring of S. aureus as a supplementary indicator in populated beaches is recommended because it will add valuable information on the sanitary quality of the seawater.  相似文献   

20.
In raw sludges and in mesophilically and thermophilically digested anaerobic sludges, large variations in numbers of viruses occurred over narrow ranges of numbers of fecal coliforms, total coliforms, and fecal streptococci, demonstrating that the bacteria were poor quantitative reflectors of the numbers of the viruses detected. Mesophilic and thermophilic digestion of anaerobic sludges destroyed all three indicator bacteria more rapidly than such digestion destroyed the viruses. The relative rates for the destruction of viruses, fecal coliforms, and fecal streptococci in the digested sludges were consistent over the 17-month study. Fecal coliforms were 7 to 8 times more sensitive than the viruses to mesophilic digestion and 9 to 10 times more sensitive to thermophilic digestion. Total coliforms were even more sensitive. The rates at which fecal streptococci were destroyed by mesophilic and thermophilic digestion of anaerobic sludges approached those at which the viruses were destroyed by those processes; this suggested that the rates at which fecal streptococci in sludges are destroyed by those processes may serve as useful indicators for the rates at which viruses in sludges are destroyed by those processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号