首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal growth factor (EGF) was linked to the toxic A chain of ricin toxin (RTA) to produce an EGF-receptor-specific cytotoxic agent, EGF-RTA. Three EGF-RTA-resistant mutants of the human HeLa cell line were selected. These mutant cell lines are 10-fold to more than 100-fold more resistant to EGF-RTA when compared to HeLa cells. The EGF-RTA-resistant mutants have at least as many EGF receptors as parent cells; the basis for the EGF-RTA-resistant phenotype must be distal to EGF binding. The EGF-RTA-resistant cells are not cross-ressitant to ricin or to diphtheria toxin; their mutant phenotype appears to be EGF specific. The EGF-RTA-resistant mutants are able to internalize and degrade EGF. However, the mutants have altered EGF receptor down-regulation and phorbol 12-tetradecanoate 13-acetate modulation properties. EGF-RTA/ammonium chloride and EGF-RTA/adenovirus co-treatment data suggest that the mutant defect(s) which confers EGF-RTA resistance is either in the endosome or at a step(s) in the intracellular EGF processing pathway between the endosome and the lysosome.  相似文献   

2.
The precise regulation of epidermal growth factor receptor (EGFR) is crucial for its function in cellular growth control. Although many antibodies against EGFR have been developed and used to analyze its regulation and function, it is not yet easy to analyze activated EGFR specifically. Activated EGFR has been mainly detected by its phosphorylation state using anti-phospho-EGFR and anti-phosphotyrosine antibodies. In the present study, we have established novel monoclonal antibodies which recognize the activated EGFR independently of its phosphorylation. Our antibodies detected active state of EGFR in immunoprecipitation and immunofluorescence, by recognizing the epitopes which are exposed through the conformational change induced by ligand-binding. Furthermore, we found that our antibodies preferentially detected the conformation of constitutively active EGFR mutants found in lung cancer cell lines. These results indicate that our antibodies may become novel research and diagnostic tools for detecting and analyzing the conformation of active EGFR in various cells and tissues.  相似文献   

3.
We describe a system for extending stopped-flow analysis to the kinetics of ligand capture and release by cell surface receptors in living cells. While most mammalian cell lines cannot survive the shear forces associated with turbulent stopped-flow mixing, we determined that a murine hematopoietic precursor cell line, 32D, is capable of surviving rapid mixing using flow rates as great as 4.0 mL/s, allowing rapid processes to be quantitated with dead times as short as 10 ms. 32D cells do not express any endogenous epidermal growth factor (EGF) receptor or other ErbB family members and were used to establish monoclonal cell lines stably expressing the EGF receptor. Association of fluorescein-labeled H22Y-murine EGF (F-EGF) to receptor-expressing 32D cells was observed by measuring time-dependent changes in fluorescence anisotropy following rapid mixing. Dissociation of F-EGF from EGF-receptor-expressing 32D cells was measured both by chase experiments using unlabeled mEGF and by experiments in which equilibrium was perturbed by dilution. Comparison of these dissociation experiments showed that little, if any, ligand-induced dissociation occurs in the chase dissociation experiments. Data from a series of association and dissociation experiments, performed at various concentrations of F-EGF in the nanomolar range and at multiple cell densities, were simultaneously analyzed using global analysis techniques and fit to a two independent receptor-class model. Our analysis is consistent with the presence of two distinct receptor populations having association rate constants of k(on1) = 8.6 x 10(6) M(-1) s(-1) and k(on2) = 2.4 x 10(6) M(-1) s(-1) and dissociation rate constants of k(off1) = 0.17 x 10(-2) s(-1) and k(off2) = 0.21 x 10(-2) s(-1). The magnitudes of these parameters suggest that under physiological conditions, in which cells are transiently exposed to nanomolar concentrations of ligand, ligand capture and release may function as the first line of regulation of the EGF receptor-induced signal transduction cascade.  相似文献   

4.
Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of ligands such as EGF or transforming growth factor alpha (TGF-alpha) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10-16, 36-37, 40-47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-alpha which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.  相似文献   

5.
Epidermal growth factor (EGF) receptor biosynthesis was examined in an oral squamous cell carcinoma line, NA, which overproduces the receptor to an even greater extent than the widely studied A431 cells. The EGF receptor of NA cells synthesized in the presence of tunicamycin had an apparent molecular weight of 130,000. The nascent protein in untreated cells was cotranslationally glycosylated to Mr 160,000 and further processed to Mr 170,000. The endo-beta-N-acetylglucosaminidase H (Endo H) digestion analysis revealed the presence of high mannose type oligosaccharide on the Mr 170,000 mature receptor. We extended the analysis by correlating the biosynthesis with the acquisition of binding activity. The unglycosylated Mr 130,000 receptor and the Mr 160,000 receptor seen after pulse-labeling had no EGF binding activity, whereas the Mr 160,000 receptor seen after chase-incubation and the Mr 170,000 receptor had binding activity. Thus, not only glycosylation but also some oligosaccharide processing is apparently necessary for the EGF binding. Treatment with processing inhibitors, such as monensin, swainsonine and 1-deoxynojirimycin, affected neither receptor transport to the plasma membrane nor binding activity. Inhibition by 1-deoxynojirimycin is thought to be incomplete since the surface receptor in treated cells had the same molecular weight as that in control cells. An Mr 160,000 receptor without binding activity accumulated in the intracellular fraction in the presence of brefeldin A, an inhibitor of intracellular transport. Thus, the EGF binding activity is thought to be acquired after the brefeldin A-sensitive process but prior to the swainsonine-sensitive mannose removal in NA cells.  相似文献   

6.
To examine the role of the ligand binding domain of epidermal growth factor receptor in its dimerization, we studied the dimerization of a truncated form of the receptor that resembles v-erbB in that it lacks a ligand binding domain. Receptor dimerization was determined by sedimentation analysis on sucrose density gradients at different concentrations of Triton X-100. At high concentrations of Triton X-100 (0.2%), the truncated receptor occurred as a monomer and displayed low basal autophosphorylation. By contrast, at low concentrations of Triton X-100 (0.01%), it existed as a dimer and exhibited high basal autophosphorylation. The ability of the truncated receptor to dimerize indicates that the ligand binding domain of the epidermal growth factor receptor is not required for receptor dimerization.  相似文献   

7.
8.
Epidermal growth factor (EGF) receptor protein kinase activity, estimated by the use of peptide substrates, was reduced by as much as 70% after the treatment of intact A431 human carcinoma cells with EGF. The apparent decrease in protein kinase activity was observed after immunoprecipitation of the receptor or after purification of the receptor by lectin chromatography. By the use of [35S]methionine, it was determined that the total amount of receptor obtained was the same whether or not cells were treated with EGF. EGF stimulated the purified receptor protein kinase activity in vitro; however, the EGF-stimulated activity of receptor from EGF-treated cells continued to be reduced by as much at 70% compared to the EGF-stimulated activity from untreated cells. The reduction in receptor protein kinase activity induced by EGF may represent a feedback mechanism by which responsiveness to the growth factor is regulated.  相似文献   

9.
10.
Conformation similarities of ricin A-chain and trichosanthin   总被引:2,自引:0,他引:2  
The conformation of ricin A-chain from castor bean was studied by circular dichroism at pH 4.7, 7 and 9 and compared with that of trichosanthin from the Chinese herb Tianhuafen. The CD spectra of ricin A-chain and trichosanthin were nearly identical at each of the three pHs. Analysis of the data indicated that, like trichosanthin, ricin A-chain had about 29% alpha-helix and 42% beta-sheet but no beta-turn. However, there was a subtle difference in the CD spectra in 20 mM sodium dodecyl sulfate, the addition of which at pH 7 slightly increased the helicity and decreased the content of beta-sheet of ricin A-chain in contrast to a larger increase in helicity at the expense of beta-sheet for trichosanthin, thus indicating a different stability against the surfactant. Native ricin A-chain and trichosanthin had about the same amount of secondary structure, which supports the belief that a high degree of sequence homology of the two proteins [Zhang & Wang (1986) Nature 321, 477-478] may lead to a conformational similarity between them, even though the two proteins are not taxonomically related.  相似文献   

11.
Treatment of Swiss 3T3 fibroblasts with basic fibroblast growth factor (bFGF) lead to a rapid reduction in epidermal growth factor (EGF) binding and a slower inhibition of EGF receptor autophosphorylation. The reduction in binding was due to a complete loss of the highest affinity EGF binding sites and a reduction in the lower affinity binding sites. Neither the inhibition of EGF binding nor the inhibition of EGF receptor autophosphorylation required protein kinase C. Treatment of cells with bFGF stimulated the phosphorylation of the EGF receptor, which persisted for several hours. The inhibition of EGF receptor autophosphorylation by bFGF was reduced in the presence of cycloheximide. However, cycloheximide had no effect on the reduction of EGF binding by bFGF. In contrast to these results with Swiss 3T3 fibroblasts, treatment of PC12 cells with bFGF lead to a reduction in EGF binding but no inhibition of EGF receptor autophosphorylation. Thus inhibited of EGF receptor autophosphorylation and inhibition of EGF binding can be uncoupled. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Properties of the receptor for epidermal growth factor   总被引:10,自引:0,他引:10  
G Carpenter 《Cell》1984,37(2):357-358
  相似文献   

13.
NIH-3T3 cells expressing the human epidermal growth factor (EGF) receptor were used in experiments to determine the fate of the EGF receptor in cells continuously exposed to EGF. EGF receptor was immunoprecipitated from cells labeled for 12 h with [35S] methionine in the absence or presence of 10 nM EGF. As expected, a single Mr = 170,000 polypeptide representing the mature EGF receptor was immune-precipitated from control cells. Surprisingly, immune precipitates from EGF-treated cells contained a prominent Mr = 125,000 receptor species, in addition to the Mr = 170,000 mature receptor. The Mr = 125,000 species was shown to be derived from the Mr = 170,000 form by pulse-chase experiments, in which the Mr = 170,000 receptor chased into the Mr = 125,000 form when EGF was included during the chase and by partial proteolysis. Both proteins became extensively phosphorylated on tyrosine residues in immune precipitate kinase assays. Treatment of immune precipitates with endoglycosidase F changed the apparent molecular weight of the Mr = 170,000 receptor to Mr = 130,000 and of the Mr = 125,000 form to Mr = 105,000, indicating that the appearance of the Mr = 125,000 protein was probably due to proteolysis. Antibody against the carboxyl terminus of the mature EGF receptor recognized the Mr = 125,000 protein, whereas antibody against the amino terminus did not. Incubation of cells with leupeptin prior to and during EGF addition inhibited processing to the Mr = 125,000 species. Methylamine and low temperature also inhibited the EGF-induced processing to the Mr = 125,000 form. These data suggest a possible role for proteolysis of the EGF receptor in receptor function.  相似文献   

14.
Epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha) compete with each other for binding to the EGF receptor. These two growth factors have similar actions, but there are distinguishable differences in their biological activities. It has never been clear how this one receptor can mediate different responses. A monoclonal antibody to the EGF receptor (13A9) has been identified which has only small effects on the binding of EGF to the EGF receptor, but which has very large effects on the binding of TGF alpha to the EGF receptor; 5 micrograms/mL antibody has been shown to totally block 0.87 microM TGF alpha from binding to purified EGF receptor and to lower both the high- and low-affinity binding constants of TGF alpha binding to EGF receptor on A431 cells by about 10-fold. The 13A9 antibody causes a 2.5-fold stimulation of the tyrosine kinase activity of partially purified EGF receptor, compared to a 4.0-fold stimulation of the tyrosine kinase activity by EGF under the same conditions. The data suggest either that the antibody stabilizes a conformation of the EGF receptor which is not favorable for TGF alpha binding or that it blocks a part of the surface of the receptor which is necessary for TGF alpha binding but not EGF binding.  相似文献   

15.
The binding of EGF induces dimerization of its receptor, leading to the stimulation of its intracellular tyrosine kinase activity. Kinase activation occurs within the context of an asymmetric dimer in which one kinase domain serves as the activator for the other kinase domain but is not itself activated. How ligand binding is related to the formation and dynamics of this asymmetric dimer is not known. The binding of EGF to its receptor is negatively cooperative--that is, EGF binds with lower affinity to the second site on the dimer than to the first site on the dimer. In this study, we analyzed the binding of (125)I-EGF to a series of EGF receptor mutants in the intracellular juxtamembrane domain and demonstrate that the most membrane-proximal portion of this region plays a significant role in the genesis of negative cooperativity in the EGF receptor. The data are consistent with a model in which the binding of EGF to the first site on the dimer induces the formation of one asymmetric kinase dimer. The binding of EGF to the second site is required to disrupt the initial asymmetric dimer and allow the formation of the reciprocal asymmetric dimer. Thus, some of the energy of binding to the second site is used to reorient the first asymmetric dimer, leading to a lower binding affinity and the observed negative cooperativity.  相似文献   

16.
This study was undertaken to determine the immunocytochemical localization of transforming growth factor α, epidermal growth factor and epidermal growth factor receptor in the endometrium of ovariectomized cats treated with oestradiol-17β and/or progesterone and in the endometrium and placenta of pregnant cats. Specific immunostaining was observed for all three antibodies. Moderate immunostaining for transforming growth factor α was observed in the epithelium of ovariectomized and oestrogen-treated cats. Dark epithelial staining was observed throughout pregnancy. The epithelial cells in progesterone-treated and peri-implantation animals contained dense deposits of reaction product, which were not reduced in intensity when immunoabsorbed antiserum was used. For epidermal growth factor, light--moderate epithelial staining was observed in ovariectomized and steroid-treated animals, and this increased in pregnant cats. Stromal staining for both the transforming and the epidermal growth factors was limited in steroid-treated animals and increased as pregnancy continued. Dark staining for epidermal growth factor receptor was observed in the epithelium and stroma in all the animals studied. The tips of surface epithelial convolutions in the non-implantation sites were always more darkly stained than in other regions of the surface epithelium. Staining in the placental trophoblast was limited to the syncytiotrophoblast for the two growth factors and the cytotrophoblast for the receptor during most of pregnancy and was absent late in pregnancy. The placental maternal giant cells contained specific immunoreactivity for all the immunogens from the middle of pregnancy to term. This study demonstrates that the two growth factors and the epidermal growth factor receptor are present in the endometrium and placenta of cats and suggests that these growth factors may play an autocrine/paracrine role during reproduction  相似文献   

17.
18.
Verapamil, a clinically important calcium channel blocker, has been found to cause a 40-fold enhancement of killing of the human KB cell line by a cytotoxic conjugate of epidermal growth factor with Pseudomonas exotoxin (EGF-PE). Synergistic effects of verapamil and EGF-PE are also seen on HeLa D98 cells and a human epidermal carcinoma cell line, A431. Verapamil also potentiates the effect of a toxic conjugate formed between Pseudomonas exotoxin and a monoclonal antibody to the human transferrin receptor (anti-TFR-PE) and enhances the effect of Pseudomonas exotoxin (PE) alone. Two other calcium antagonists were tested. Diltiazem enhances the cytotoxic effect of EGF-PE, but nifedipine does not. Verapamil does not affect the binding and uptake of 125I-EGF by KB cells, but it significantly delays the disappearance of internalized 125I-EGF from the cells. Density gradient fractionation studies using cell homogenates suggest that 125I-EGF accumulates in an undegraded form in lysosomes when cells are treated with verapamil. By immunofluorescence microscopy using an antibody to PE, EGF-PE was found to accumulate in lysosomes; by electron microscopy the lysosomes had an abnormal appearance. The effects of verapamil on toxicity of EGF-PE and lysosomal function appear to be related. However, it is not known whether the enhanced toxicity of EGF-PE in the presence of verapamil is due to its delayed degradation in lysosomes or some more general effect of verapamil on membrane permeability.  相似文献   

19.
Thioridazine, a phenothiazine calmodulin inhibitor, aggravated the cytotoxic effect of a conjugate (EGF-PE) of epidermal growth factor (EGF) coupled with Pseudomonas exotoxin against cultured HeLa cells. Other phenothiazine calmodulin inhibitors, trifluoperazine and chlorpromazine, also intensified the cytotoxic effect of EGF-PE, whereas N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W7) had no such effect. By using iodinated epidermal growth factor ( [125I]EGF), the effect of thioridazine on intracellular transport of EGF was examined. The release of radioactivity associated with [125I]EGF into medium was slow in the presence of thioridazine. The Percoll gradient centrifugation pattern showed that thioridazine delayed both the appearance of [125I]EGF in lysosomes and the disappearance of [125I]EGF from the lysosomes. The pH value in lysosomes was 5.28 in thioridazine-treated HeLa cells, while that in untreated cells was 5.15. Thioridazine was found to inhibit lysosomal enzyme activities of cathepsin B and acid phosphatase, but not beta-hexosaminidase when cell extracts were treated with the drug. Electron microscopy showed an increased number of electron-dense bodies, possibly autophagosomes/lysosomes in HeLa cells grown for 48 h with 3 micrograms/ml thioridazine. The potentiating action of EGF-PE by thioridazine is discussed in relation to the altered lysosomal function in treated cells.  相似文献   

20.
Human, rat and mouse epidermal growth factors (EGF) bind to the same receptor on human placenta, but the binding characteristics differ. The apparent affinity constant (KA) for human EGF is higher (15 X 10(9) l/mol) than KA for rat EGF (10 X 10(9) l/mol). Mouse EGF binds with the lowest KA (5 X 10(9) l/mol). The pH optimum differs so that human and rat EGF bind with a pH optimum of 8.0, whereas mouse EGF binds with an optimum of pH 7.4. Half maximal dissociation is 130, 50 and 25 min for human, rat and mouse EGF, respectively. The structures of human, rat and mouse EGF differ somewhat. At least 11 of the first 24 residues differ. The N-terminal sequence of rat EGF is: Ala/Ser-Gly-X-Pro-Pro-Ser-Tyr-Asp-Gly-Tyr-X-Lys-Asp-Gly-Gly-Val-X-Met-Ty r-Val -Glu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号