首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
Lung endothelial barrier dysfunction leads to severe pathologies, including the lethal Acute Respiratory Distress Syndrome. P53 has been associated with anti‐inflammatory activities. The current study employs a variety of unfolded protein response (UPR) activators and inhibitors to investigate the regulation of P53 by UPR in lung cells. The bovine cells that were exposed to the UPR inductors brefeldin A, dithiothreitol, and thapsigargin; demonstrated elevated expression levels of P53 compared to the vehicle‐treated cells. On the contrary, the UPR inhibitors N‐acetyl cysteine, kifunensine, and ATP‐competitive IRE1α kinase‐inhibiting RNase attenuator; produced the opposite effects. The outcomes of the present study reveal a positive regulation between UPR and P53. Since it has been shown that a mild induction of the unfolded protein response opposes inflammation, we suggest that P53 is involved in those protective activities in the lung.  相似文献   

4.
Although the structure of the molecular chaperone Hsp90 has been extensively characterized by X-ray crystallography, the nature of the interactions between Hsp90 and its client proteins remains unclear. We present results from a series of spectroscopic studies that strongly suggest that these interactions are highly dynamic in solution. Extensive NMR assignments have been made for human Hsp90 through the use of specific isotopic labeling of one- and two-domain constructs. Sites of interaction of a client protein, the p53 DNA-binding domain, were then probed both by chemical shift mapping and by saturation transfer NMR spectroscopy. Specific spectroscopic changes were small and difficult to observe, but were reproducibly measured for residues over a wide area of the Hsp90 surface in the N-terminal, middle and C-terminal domains. A somewhat greater specificity, for the area close to the interface between the N-terminal and middle domains of Hsp90, was identified in saturation transfer experiments. These results are consistent with a highly dynamic and nonspecific interaction between Hsp90 and p53 DNA-binding domain in this chaperone-client system, which results in changes in the client protein structure that are detectable by spectroscopic and other methods.  相似文献   

5.
6.
7.
Using highly purified proteins, we have identified intermediate reactions that lead to the assembly of molecular chaperone complexes with wild-type or mutant p53R175H protein. Hsp90 possesses higher affinity for wild-type p53 than for the conformational mutant p53R175H. The presence of Hsp90 in a complex with wild-type p53 inhibits the binding of Hsp40 and Hsc70 to p53, consequently preventing the formation of wild-type p53-multiple chaperone complexes. The conformational mutant p53R175H can form a stable heterocomplex with Hsp90 only in the presence of Hsc70, Hsp40, Hop and ATP. The anti-apoptotic factor Bag-1 can dissociate Hsp90 from a pre- assembled complex wild-type p53 protein, but it cannot dissociate a pre-assembled p53R175H-Hsp40- Hsc70-Hop-Hsp90 heterocomplex. The results presented here provide possible molecular mechanisms that can help to explain the observed in vivo role of molecular chaperones in the stabilization and cellular localization of wild-type and mutant p53 protein.  相似文献   

8.
9.
The activity and structural integrity of the tumor suppressor protein p53 is of crucial importance for the prevention of cancer. p53 is a conformational flexible and labile protein, in which structured and unstructured regions function in a synergistic manner. The molecular chaperone Hsp90 is known to bind to mutant and wild type p53 in vivo. Using highly purified proteins we analyzed the interaction and the binding sites between both proteins in detail. Our results demonstrate that Hsp90 binds to a folded, native-like conformation of p53 in vitro with micromolar affinity. Specifically, the DNA-binding domain of p53 and the middle and carboxy-terminal domains of Hsp90 are responsible for this interaction, which is essential to stabilize p53 at physiological temperatures and to prevent it from irreversible thermal inactivation. Our results are in agreement with a model in which Hsp90 is required to maintain the folded, active state of p53 by a reversible interaction, thus introducing an additional level of regulation.  相似文献   

10.
11.
The aim of the present study was to investigate the influence of 50 Hz sinusoidal magnetic field on Hsp27, Hsp70, and Hsp90 expression in a model of primary culture of porcine aortic endothelial cells (PAEC). We took into consideration the Hsp profile in terms of mRNA expression, protein expression and protein localization inside the cells. The choice of the cell system was motivated by the involvement of the endothelial cells in the onset of many diseases; moreover, only few reports describe the effects of extremely low frequency magnetic fields (ELF-MFs) on such cells. ELF-MF exposure induced an increase in the mRNA levels of the three proteins, which was statistically significant for Hsp70. On the contrary, we did not observe any influence on Hsp27, Hsp70, and Hsp90 protein levels. Analysis in situ by immunofluorescence revealed that ELF-MF exposure affected the cellular distribution of Hsp27; in particular a partial relocalization in the nucleus was observed.  相似文献   

12.
13.
14.
The structured DNA‐binding domain (DBD) of p53 is a well‐known client protein of the chaperone Hsp90. The p53 DBD contains a single zinc ion, coordinated by the side chains of Cys176, His179, Cys238, and Cys242; zinc coordination plays a structural role to stabilize the DBD and is required for its DNA binding. The ambiguous nature of the p53‐Hsp90 interaction, together with the stabilizing role of the zinc in the structure of the DBD, prompted us to examine the interaction of Hsp90 with zinc‐free p53 DBD. NMR spectroscopy and native gel electrophoresis did not show any apparent preference for the interaction of the destabilized zinc‐free form of p53 DBD with Hsp90. Intriguingly, however, at lower protein concentrations, closer to physiological concentrations, the addition of Hsp90, but not other chaperones such as Hsp70, Hsp40, p23, and HOP, appears to slow or prevent the aggregation of zinc‐free p53 DBD. This result suggests that part of the function of the Hsp90‐p53 interaction in the cell may be to stabilize the apoprotein in the absence of zinc.  相似文献   

15.
16.
《Cell reports》2023,42(1):111920
  1. Download : Download high-res image (165KB)
  2. Download : Download full-size image
  相似文献   

17.
Several signaling pathways that monitor the dynamic state of the cell converge on the tumor suppressor p53. The ability of p53 to process these signals and exert a dynamic downstream response in the form of cell cycle arrest and/or apoptosis is crucial for preventing tumor development. This p53 function is abrogated by p53 gene mutations leading to alteration of protein conformation. Hsp90 has been implicated in regulating both wild-type and mutant p53 conformations, and Hsp90 antagonists are effective for the therapy of some human tumors. Using cell lines that contain human tumor-derived temperature-sensitive p53 mutants we show that Hsp90 is required for both stabilization and reactivation of mutated p53 at the permissive temperature. A temperature decrease to 32 degrees C causes conversion to a protein conformation that is capable of inducing expression of MDM2, leading to reduction of reactivated p53 levels by negative feedback. Mutant reactivation is enhanced by simultaneous treatment with agents that stabilize the reactivated protein and is blocked by geldanamycin, a specific inhibitor of Hsp90 activity, indicating that Hsp90 antagonist therapy and therapies that act to reactivate mutant p53 will be incompatible. In contrast, Hsp90 is not required for maintaining wild-type p53 or for stabilizing wild-type p53 after treatment with chemotherapeutic agents, indicating that Hsp90 therapy might synergize with conventional therapies in patients with wild-type p53. Our data demonstrate the importance of the precise characterization of the interaction between p53 mutants and stress proteins, which may shed valuable information for fighting cancer via the p53 tumor suppressor pathway.  相似文献   

18.
磁免疫电化学发光检测肺癌血清p53抗体   总被引:1,自引:0,他引:1  
肿瘤抑制基因——p53基因的突变可能产生p53抗体.p53抗体在肿瘤的诊断、预后及监测等方面具有重要的临床价值.目前检测p53抗体的方法,如酶联免疫分析方法,需要多个步骤,比较费时,且大部分检测指标只能是半定量,具有一定的局限性.提出了一种磁免疫电化学发光(IM-ECL)分析方法定量检测人血清p53抗体.这种新的分析方法检测人血清p53抗体的最低检测极限可达到10 ng/L,标准曲线的动力学范围和线性范围达到5个数量级(0.01~1 000 μg/L).我们应用IM-ECL分析法检测肺癌病人血清,只需要50 μl的样品量,30 min的孵育时间和少于50 s的采集时间,得出肺癌血清中p53抗体的阳性率为28.6 %,然后通过标准曲线定量阳性血清中p53抗体的浓度.从肺癌血清的结果中发现,随着临床分期的升高,p53抗体浓度增加.IM-ECL分析方法在检测限、线性范围、分析时间等方面都优于酶联免疫分析,是一种可行的快速、灵敏、定量检测人血清p53抗体的分析方法.  相似文献   

19.
Lung cancer is the leading cause of tumor-related death. The lack of effective treatments urges the development of new therapeutic approaches able to selectively kill cancer cells. The connection between aberrant microRNA (miRNA – miR) expression and tumor progression suggests a new strategy to fight cancer by interfering with miRNA function. In this regard, LNAs (locked nucleic acids) have proven to be very promising candidates for miRNA neutralization. Here, we employed an LNA-based anti-miR library in a functional screening to identify putative oncogenic miRNAs in non-small-cell lung cancer (NSCLC). By screening NIH-H460 and A549 cells, miR-197 was identified as a new functional oncomiR, whose downregulation induces p53-dependent lung cancer cell apoptosis and impairs the capacity to establish tumor xenografts in immunodeficient mice. We further identified the two BH3-only proteins NOXA and BMF as new miR-197 targets responsible for induction of apoptosis in p53 wild-type cells, delineating miR-197 as a key survival factor in NSCLC. Thus, we propose the inhibition of miR-197 as a novel therapeutic approach against lung cancer.  相似文献   

20.
The 90-kDa heat shock protein (Hsp90), the target of the ansamycin class of anti-cancer drugs, is required for the conformational activation of a specific group of signal transducers, including Raf-1. In this report we have identified a 75-kDa Raf-associated protein as Hsp90N, a novel member of the Hsp90 family. Intriguingly, the ansamycin-binding domain is replaced in Hsp90N by a much shorter, hydrophobic sequence, preceded by a putative myristylation signal. We demonstrate that, although much less abundant, Hsp90N binds Raf with a higher affinity than Hsp90. In sharp contrast to Hsp90, Hsp90N does not associate with p50(cdc37), the Hsp90 kinase cofactor. Hsp90N was found to activate Raf in transiently transfected cells, while Rat F111 fibroblasts stably transfected with Hsp90N exhibited elevated activity of the Raf and downstream ERK kinases. This may be due to Raf binding to myristylated Hsp90N, followed by Raf translocation to the membrane. To examine whether Hsp90N could therefore substitute for Ras in Raf recruitment to the cell membrane, Hsp90N was transfected in c-Ras-deficient, 10T1/2-derived preadipocytes. Our results indicate that, as shown before for activated Ras or Raf, the introduction of even low levels of Hsp90N through transfection in c-Ras-deficient preadipocytes causes a dramatic block of differentiation. Higher levels of Hsp90N expression resulted in neoplastic transformation, including interruption of gap junctional, intercellular communication, and anchorage-independent proliferation. These results indicate that the observed activation of Raf by Hsp90N has a profound biological effect, which is largely c-Ras-independent. With the recent finding that p50(cdc37) is tumorigenic in transgenic mice, these results reinforce the intriguing observation that the family of heat shock proteins represents a novel class of molecules with oncogenic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号