共查询到20条相似文献,搜索用时 0 毫秒
1.
We present an updated version of the protein–RNA docking benchmark, which we first published four years back. The non‐redundant protein–RNA docking benchmark version 2.0 consists of 126 test cases, a threefold increase in number compared to its previous version. The present version consists of 21 unbound–unbound cases, of which, in 12 cases, the unbound RNAs are taken from another complex. It also consists of 95 unbound–bound cases where only the protein is available in the unbound state. Besides, we introduce 10 new bound–unbound cases where only the RNA is found in the unbound state. Based on the degree of conformational change of the interface residues upon complex formation the benchmark is classified into 72 rigid‐body cases, 25 semiflexible cases and 19 full flexible cases. It also covers a wide range of conformational flexibility including small side chain movement to large domain swapping in protein structures as well as flipping and restacking in RNA bases. This benchmark should provide the docking community with more test cases for evaluating rigid‐body as well as flexible docking algorithms. Besides, it will also facilitate the development of new algorithms that require large number of training set. The protein–RNA docking benchmark version 2.0 can be freely downloaded from http://www.csb.iitkgp.ernet.in/applications/PRDBv2 . Proteins 2017; 85:256–267. © 2016 Wiley Periodicals, Inc. 相似文献
2.
3.
4.
5.
6.
Efficient DNA repair mechanisms frequently limit the effectiveness of chemotherapeutic agents that act through DNA damaging mechanisms. Consequently, proteins involved in DNA repair have increasingly become attractive targets of high‐throughput screening initiatives to identify modulators of these pathways. Disruption of the XRCC4‐Ligase IV interaction provides a novel means to efficiently halt repair of mammalian DNA double strand break repair; however; the extreme affinity of these proteins presents a major obstacle for drug discovery. A better understanding of the interaction surfaces is needed to provide a more specific target for inhibitor studies. To clearly define key interface(s) of Ligase IV necessary for interaction with XRCC4, we developed a competitive displacement assay using ESI‐MS/MS and determined the minimal inhibitory fragment of the XRCC4‐interacting region (XIR) capable of disrupting a complex of XRCC4/XIR. Disruption of a single helix (helix 2) within the helix‐loop‐helix clamp of Ligase IV was sufficient to displace XIR from a preformed complex. Dose‐dependent response curves for the disruption of the complex by either helix 2 or helix‐loop‐helix fragments revealed that potency of inhibition was greater for the larger helix‐loop‐helix peptide. Our results suggest a susceptibility to inhibition at the interface of helix 2 and future studies would benefit from targeting this surface of Ligase IV to identify modulators that disrupt its interaction with XRCC4. Furthermore, helix 1 and loop regions of the helix‐loop‐helix clamp provide secondary target surfaces to identify adjuvant compounds that could be used in combination to more efficiently inhibit XRCC4/Ligase IV complex formation and DNA repair. Proteins 2014; 82:187–194. © 2013 Wiley Periodicals, Inc. 相似文献
7.
Qiang Zhang Yao‐Wu Zheng Shaun R. Coughlin Xiaokun Shu 《Protein science : a publication of the Protein Society》2018,27(4):874-879
Detection of protein–protein interactions involved in signal transduction in live cells and organisms has a variety of important applications. We report a fluorogenic assay for G protein‐coupled receptor (GPCR)–β‐arrestin interaction that is genetically encoded, generalizes to multiple GPCRs, and features high signal‐to‐noise because fluorescence is absent until its components interact upon GPCR activation. Fluorescence after protease‐activated receptor‐1 activation developed in minutes and required specific serine–threonine residues in the receptor carboxyl tail, consistent with a classical G protein‐coupled receptor kinase dependent β‐arrestin recruitment mechanism. This assay provides a useful complement to other in vivo assays of GPCR activation. 相似文献
8.
9.
Hydrophobic effects, often conflated with hydrophobic forces, are implicated as major determinants in biological association and self‐assembly processes. Protein–protein interactions involved in signaling pathways in living systems are a prime example where hydrophobic effects have profound implications. In the context of protein–protein interactions, a priori knowledge of relevant binding interfaces (i.e., clusters of residues involved directly with binding interactions) is difficult. In the case of hydrophobically mediated interactions, use of hydropathy‐based methods relying on single residue hydrophobicity properties are routinely and widely used to predict propensities for such residues to be present in hydrophobic interfaces. However, recent studies suggest that consideration of hydrophobicity for single residues on a protein surface require accounting of the local environment dictated by neighboring residues and local water. In this study, we use a method derived from percolation theory to evaluate spanning water networks in the first hydration shells of a series of small proteins. We use residue‐based water density and single‐linkage clustering methods to predict hydrophobic regions of proteins; these regions are putatively involved in binding interactions. We find that this simple method is able to predict with sufficient accuracy and coverage the binding interface residues of a series of proteins. The approach is competitive with automated servers. The results of this study highlight the importance of accounting of local environment in determining the hydrophobic nature of individual residues on protein surfaces. Proteins 2014; 82:3312–3326. © 2014 Wiley Periodicals, Inc. 相似文献
10.
11.
Xiang Li Emily A. Foley Shigehiro A. Kawashima Kelly R. Molloy Yinyin Li Brian T. Chait Tarun M. Kapoor 《Protein science : a publication of the Protein Society》2013,22(3):287-295
Post‐translational modifications (PTM) of proteins can control complex and dynamic cellular processes via regulating interactions between key proteins. To understand these regulatory mechanisms, it is critical that we can profile the PTM‐dependent protein–protein interactions. However, identifying these interactions can be very difficult using available approaches, as PTMs can be dynamic and often mediate relatively weak protein–protein interactions. We have recently developed CLASPI (cross‐linking‐assisted and stable isotope labeling in cell culture‐based protein identification), a chemical proteomics approach to examine protein–protein interactions mediated by methylation in human cell lysates. Here, we report three extensions of the CLASPI approach. First, we show that CLASPI can be used to analyze methylation‐dependent protein–protein interactions in lysates of fission yeast, a genetically tractable model organism. For these studies, we examined trimethylated histone H3 lysine‐9 (H3K9Me3)‐dependent protein–protein interactions. Second, we demonstrate that CLASPI can be used to examine phosphorylation‐dependent protein–protein interactions. In particular, we profile proteins recognizing phosphorylated histone H3 threonine‐3 (H3T3‐Phos), a mitotic histone “mark” appearing exclusively during cell division. Our approach identified survivin, the only known H3T3‐Phos‐binding protein, as well as other proteins, such as MCAK and KIF2A, that are likely to be involved in weak but selective interactions with this histone phosphorylation “mark”. Finally, we demonstrate that the CLASPI approach can be used to study the interplay between histone H3T3‐Phos and trimethylation on the adjacent residue lysine 4 (H3K4Me3). Together, our findings indicate the CLASPI approach can be broadly applied to profile protein–protein interactions mediated by PTMs. 相似文献
12.
13.
Biancamaria Gliozzo Chin K. Sung PierLuigi Scalia Vincenzo Papa Francesco Frasca Laura Sciacca Francesco Giorgino Giovanni Milazzo Ira D. Goldfine Riccardo Vigneri Vincenzo Pezzino 《Journal of cellular biochemistry》1998,70(2):268-280
In many human breast cancers and cultured cell lines, insulin receptor expression is elevated, and insulin, via its own insulin receptor, can stimulate cell growth. It has recently been demonstrated that the enzyme phosphatidylinositol-3-kinase (PI3-K) mediates various aspects of insulin receptor signaling including cell growth. In order to understand the mechanisms for insulin-stimulated cell growth in human breast cancer, we measured insulin-stimulable PI3-K activity in a non-transformed breast epithelial cell line, MCF-10A, and in two malignantly transformed cell lines, ZR-75-1 and MDA-MB157. All three cell lines express comparable amounts of insulin receptors whose tyrosine autophosphorylation is increased by insulin, and in these cell lines insulin stimulates growth. In MDA-MB157 and MCF-10A cells, insulin stimulated PI3-K activity three- to fourfold. In ZR-75-1 cells, however, insulin did not stimulate PI3-K activity. In ZR-75-1 cells PI3-K protein was present, and its activity was stimulated by epidermal growth factor, suggesting that there might be a defect in insulin receptor signaling upstream of PI3-K and downstream of the insulin receptor. Next, we studied insulin receptor substrate-1 (IRS-1), a major endogenous substrate for the insulin receptor which, when tyrosine is phosphorylated by the insulin receptor, interacts with and activates PI3-K. In ZR-75-1 cells, there were reduced levels of protein for IRS-1. In these cells, both Shc tyrosine phosphorylation and mitogen-activated protein kinase (MAP-K) activity were increased by the insulin receptor (indicating that the p21ras pathway may account for insulin-stimulated cell growth in ZR-75-1 cells). The PI3-K inhibitor LY294002 (50 μM) reduced insulin-stimulated growth in MCF-10A and MDA-MB157 cell lines, whereas it did not modify insulin effect on ZR-75-1 cell growth. The MAP-K/Erk (MEK) inhibitor PD98059 (50 μM) consistently reduced insulin-dependent growth in all three cell lines. Taken together, these data suggest that in breast cancer cells insulin may stimulate cell growth via PI3-K–dependent or–independent pathways. J. Cell. Biochem. 70:268–280, 1998. © 1998 Wiley-Liss, Inc. 相似文献
14.
15.
16.
17.
In order to generate protein assemblies with a desired function, the rational design of protein–protein binding interfaces is of significant interest. Approaches based on random mutagenesis or directed evolution may involve complex experimental selection procedures. Also, molecular modeling approaches to design entirely new proteins and interactions with partner molecules can involve large computational efforts and screening steps. In order to simplify at least the initial effort for designing a putative binding interface between two proteins the Match_Motif approach has been developed. It employs the large collection of known protein–protein complex structures to suggest interface modifications that may lead to improved binding for a desired input interaction geometry. The approach extracts interaction motifs based on the backbone structure of short (four residues) segments and the relative arrangement with respect to short segments on the partner protein. The interaction geometry is used to search through a database of such motifs in known stable bound complexes. All matches are rapidly identified (within a few seconds) and collected and can be used to guide changes in the interface that may lead to improved binding. In the output, an alternative interface structure is also proposed based on the frequency of occurrence of side chains at a given interface position in all matches and based on sterical considerations. Applications of the procedure to known complex structures and alternative arrangements are presented and discussed. The program, data files, and example applications can be downloaded from https://www.groups.ph.tum.de/t38/downloads/. 相似文献
18.
Yaqin Hou Haihua Quan Weiwei Xu Yongli Bao Yuxin Li Yuan Fu Shuxue Zou 《Protein science : a publication of the Protein Society》2013,22(8):1060-1070
A plethora of both experimental and computational methods have been proposed in the past 20 years for the identification of hot spots at a protein–protein interface. The experimental determination of a protein–protein complex followed by alanine scanning mutagenesis, though able to determine hot spots with much precision, is expensive and has no guarantee of success while the accuracy of the current computational methods for hot‐spot identification remains low. Here, we present a novel structure‐based computational approach that accurately determines hot spots through docking into a set of proteins homologous to only one of the two interacting partners of a compound capable of disrupting the protein–protein interaction (PPI). This approach has been applied to identify the hot spots of human activin receptor type II (ActRII) critical for its binding toward Cripto‐I. The subsequent experimental confirmation of the computationally identified hot spots portends a potentially accurate method for hot‐spot determination in silico given a compound capable of disrupting the PPI in question. The hot spots of human ActRII first reported here may well become the focal points for the design of small molecule drugs that target the PPI. The determination of their interface may have significant biological implications in that it suggests that Cripto‐I plays an important role in both activin and nodal signal pathways. 相似文献
19.
Masaki Kato Mineo Abe Yoshihiro Kuroda Munetaka Hirose Minoru Nakano Tetsurou Handa 《Journal of peptide science》2009,15(5):327-336
In an attempt to develop non‐ATP‐competitive inhibitors of the autophosphorylation of IR, the effects of the synthetic peptides, Ac‐DIY1158ET‐NH2 and Ac‐DY1162Y1163RK‐NH2, on the phosphorylation of IR were studied in vitro. The peptides were derived from the amino‐acid sequence in the activation loop of IR. They inhibited the autophosphorylation of IR to 20.5 and 40.7%, respectively, at 4000 µM . The Asp/Asn‐ and Glu/Gln‐substituted peptides, Ac‐NIYQT‐NH2 and Ac‐NYYRK‐NH2, more potently inhibited the autophosphorylation than did the corresponding parent peptides. The inhibitory potencies of the substituted peptides were decreased with increasing concentrations of ATP, indicating that these peptides employ an ATP‐competitive mechanism in inhibiting the autophosphorylation of IR. In contrast, those of the parent peptides were not affected. Mass spectrometry showed that the parent peptides were phosphorylated by IR, suggesting that they interact with the catalytic loop. Moreover, docking simulations predicted that the substituted peptides would interact with the ATP‐binding region of IR, whereas their parent peptides would interact with the catalytic loop of IR. Thus, Ac‐DIYET‐NH2 and Ac‐DYYRK‐NH2 are expected to be non‐ATP‐competitive inhibitors. These peptides could contribute to the development of a drug employing a novel mechanism. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
20.
Jia Huang Tomohiro Hamasaki Yoshihisa Ozoe 《Archives of insect biochemistry and physiology》2010,73(2):74-86
Series of agonists and antagonists were examined for their actions on a Bombyx moriα‐adrenergic‐like octopamine receptor (OAR) stably expressed in HEK‐293 cells. The rank order of potency of the agonists was clonidine>naphazoline>tolazoline in Ca2+ mobilization assays, and that of the antagonists was chlorpromazine>yohimbine. These findings suggest that the B. mori OAR is more closely related to the class‐1 OAR in the intact tissue than to the other classes. N′‐(4‐Chloro‐o‐tolyl)‐N‐methylformamidine (DMCDM) and 2‐(2,6‐diethylphenylimino)imidazolidine (NC‐5) elevated the intracellular calcium concentration ([Ca2+]i) with EC50s of 92.8 µM and 15.2 nM, respectively. DMCDM and NC‐5 led to increases in intracellular cAMP concentration ([cAMP]i) with EC50s of 234 nM and 125 nM, respectively. The difference in DMCDM potencies between the cAMP and Ca2+ assays might be due to “functional selectivity.” The Ca2+ and cAMP assay results for DMCDM suggest that the elevation of [cAMP]i, but not that of [Ca2+]i, might account for the insecticidal effect of formamidine insecticides. © 2009 Wiley Periodicals, Inc. 相似文献