首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work describes the continuous synthesis of ethyl esters via enzymatic catalysis on a packed‐bed continuous reactor, using mixtures of immobilized lipases (combi‐lipases) of Candida antarctica (CALB), Thermomyces lanuginosus (TLL), and Rhizomucor miehei (RML). The influence of the addition of glass beads to the reactor bed, evaluation of the use of different solvents, and flow rate on reaction conditions was studied. All experiments were conducted using the best combination of lipases according to the fatty acid composition of the waste oil (combi‐lipase composition: 40% of TLL, 35% of CALB, and 25% of RML) and soybean oil (combi‐lipase composition: 22.5% of TLL, 50% of CALB, and 27.5% of RML). The best general reaction conditions were found to be using tert‐butanol as solvent, and the flow rate of 0.08 mL min?1. The combi‐lipase reactors operating at steady state for over 30 days (720 h), kept conversion yields of ~50%, with average productivity of 1.94 gethyl esters h?1, regardless of the type of oil in use. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:952–959, 2018  相似文献   

2.
A new strain of yellow‐green algae (Xanthophyceae, Heterokonta), tentatively named Heterococcus sp. DN1 (UTEX accession number UTEX ZZ885), was discovered among snow fields in the Rocky Mountains. Axenic cultures of H. sp. DN1 were isolated and their cellular morphology, growth, and composition of lipids were characterized. H. sp. DN1 was found to grow at temperatures approaching freezing to accumulate large intracellular stores of lipids. H. sp. DN1 produces the highest quantity of lipids when grown undisturbed with high light in low temperatures. Of particular interest was the accumulation of eicosapentaenoic acid, known to be important for human nutrition, and palmitoleic acid, known to improve biodiesel feedstock properties. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:853–861, 2013  相似文献   

3.
Biocatalysis is nowadays considered as one of the most important tools in green chemistry. The elimination of multiple steps involved in some of the most complex chemical synthesis, reducing the amounts of wastes and hazards, thus increasing the reaction yields and decreasing the intrinsic costs, are the major advantages of biocatalysis. This work aims at improving the enzymatic hydrolysis of olive oil to produce valuable fatty acids through emulsion systems formed by long alkyl chain ionic liquids (ILs). The optimization of the emulsion and the best conditions to maximize the production of fatty acids were investigated. The stability of the emulsion was characterized considering the effect of several parameters, namely, the IL and its concentration and different water/olive oil volumetric ratios. ILs from the imidazolium and phosphonium families were evaluated. The results suggest that the ILs effect on the hydrolysis performance varies with the water concentration and the emulsion system formed, that is, water‐in‐oil or oil‐in‐water emulsion. Although at low water concentrations, the presence of ILs does not present any advantages for the hydrolysis reaction, at high water contents (in oil‐in‐water emulsions), the imidazolium‐based IL acts as an enhancer of the lipase catalytic capacity, super‐activating 1.8 times the enzyme, and consequently promoting the complete hydrolysis of the olive oil for the highest water contents [85% (v/v)]. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1473–1480, 2015  相似文献   

4.
Improved production costs will accelerate commercialization of polyhydroxyalkanoate (PHA) polymer and PHA-based products. Plant oils are considered favorable feedstocks, due to their high carbon content and relatively low price compared to sugars and other refined carbon feedstocks. Different PHA production strategies were compared using a recombinant strain of Ralstonia eutropha that produces high amounts of P(HB-co-HHx) when grown on plant oils. This R. eutropha strain was grown to high cell densities using batch, extended batch, and fed batch fermentation strategies, in which PHA accumulation was triggered by nitrogen limitation. While extended batch culture produced more biomass and PHA than batch culture, fed batch cultivation was shown to produce the highest levels of biomass and PHA. The highest titer achieved was over 139 g/L cell dry weight (CDW) of biomass with 74% of CDW as PHA containing 19 mol% HHx. Our data suggest that the fermentation process is scalable with a space time yield (STY) better than 1 g PHA/L/h. The achieved biomass concentration and PHA yield are among the highest reported for the fermentation of recombinant R. eutropha strains producing P(HB-co-HHx).  相似文献   

5.
A non-equilibrium solid phase micro-extraction application was tested for the rapid extraction of essential oil from single oil glands of sage and the oil components compared with those determined by solvent extract and distillation. Oil glands were directly ruptured with a polydimethylsiloxane-coated fused silica fibre and the essential oil was sorbed. Three insertion levels of an individual plant of Salvia officinalis involving an immature apical young leaf, an expanding and a fully developed leaf, respectively, were used to determine the applicability of this method. Thirty-eight components in the oil could be identified by GC-MS. The method only showed small semi-quantitative differences compared with conventional methods. Chemical variation of single oil glands within the immature and premature leaf was higher than within the homogeneous mature leaf. The intermediary, still-expanding leaf was used to carry out a detailed study of the glands. The basal region of the intermediary leaf contained compounds in high conformity with the young leaf trichomes. The remaining oil glands of this leaf showed inconsistent accumulation patterns.  相似文献   

6.
Encapsulation of proteins in poly(lactic-co-glycolic) acid (PLGA) microspheres by the water-in-oil-in-water (w/o/w) technique is very challenging because of the inherent physical instability of proteins. In particular, exposure of proteins to the first water-in-oil emulsion causes unwanted interface-induced protein inactivation and aggregation. We tested whether salts could afford stabilization of a model protein, hen egg-white lysozyme, against the detrimental events occurring at the w/o interface and subsequently upon w/o/w encapsulation. First, we investigated the effect of salts on the specific enzyme activity and generation of soluble precipitates and insoluble aggregates upon emulsification of an aqueous lysozyme solution with methylene chloride. It was found that lysozyme precipitation occurred upon emulsification. The amount of precipitate formed at salt concentrations between 10-100 mM was related to the position of the anion in the electroselectivity series (SO(4) (2-) > SCN(-) > Cl(-) > H(2)PO(4) (-)) while high salt concentrations (1M) led to > 80% of lysozyme precipitation regardless of the salt. The precipitates consisted of buffer-soluble protein precipitates and water-insoluble noncovalent aggregates. Lysozyme precipitation, aggregation, and inactivation upon emulsification were largely prevented in the presence of 50 mM KH(2)PO(4) while KSCN caused an increase in these detrimental events. Second, it was tested whether the improved structural integrity of lysozyme at the w/o interface would improve its stability upon w/o/w encapsulation in PLGA microspheres. Some conditions indeed led to improved stability, particularly codissolving lysozyme with 50 mM KH(2)PO(4) reduced loss in the specific activity and aggregation. In conclusion, the type and concentration of salts is a critical parameter when encapsulating protein in PLGA microspheres.  相似文献   

7.
Extremely stable water-in-oil macroemulsions have been obtained by dispersing water in isooctane in the presence of lecithin. Either prokaryotic (Escherichia coli) and eukaryotic (Saccharomyces cerevisiae and Rhodotorula minuta) cells hosted in these water-in-oil macroemulsions are viable for weeks despite the consistent excess of organic solvent (ranging from 70 to 84%, v/v) in these ternary systems. Conjugation occurs upon mixing macroemulsions containing F(+) or F(-) Escherichia coli strains, indicating consistent mass transfer between the water droplets. Populations of yeasts hosted in water-in-oil macroemulsion feature a higher frequency of cells aggregation when compared with the corresponding populations suspended in homogeneous aqueous media.  相似文献   

8.
9.
Lavandin (Lavandula × hybrida) is an evergreen shrub and cultivated worldwide for its essential oil which possesses various biological activities. In this study, the essential oils were isolated from the leaves of ten lavandin populations in western Iran. The hydrodistilled essential oils were analyzed by GC‐FID/MS. Results indicated significant differences (P ≤ 0.05) among the various populations for the main essential oil constituents. The major components from different populations were 1,8‐cineole (31.64 – 47.94%), borneol (17.11 – 26.14%), and camphor (8.41 – 12.68%). In vitro antibacterial activity was evaluated against S. agalactiae, S. aureus, E. coli, and K. pneumoniae. The inhibition zones were in the range of 09.36 mm for S. aureus to 23.30 mm for E. coli. Results indicated that there was a significant correlation between essential oil composition and level of antibacterial efficacy expressed as inhibition zones.  相似文献   

10.
Producing healthy, high‐oleic oils and eliminating trans‐fatty acids from foods are two goals that can be addressed by reducing activity of the oleate desaturase, FAD2, in oilseeds. However, it is essential to understand the consequences of reducing FAD2 activity on the metabolism, cell biology and physiology of oilseed crop plants. Here, we translate knowledge from studies of fad2 mutants in Arabidopsis (Arabidopsis thaliana) to investigate the limits of non‐GMO approaches to maximize oleic acid in the seed oil of canola (Brassica napus), a species that expresses three active FAD2 isozymes. A series of hypomorphic and null mutations in the FAD2.A5 isoform were characterized in yeast (Saccharomyes cerevisiae). Then, four of these were combined with null mutations in the other two isozymes, FAD2.C5 and FAD2.C1. The resulting mutant lines contained 71–87% oleic acid in their seed oil, compared with 62% in wild‐type controls. All the mutant lines grew well in a greenhouse, but in field experiments we observed a clear demarcation in plant performance. Mutant lines containing less than 80% oleate in the seed oil were indistinguishable from wild‐type controls in growth parameters and seed oil content. By contrast, lines with more than 80% oleate in the seed oil had significantly lower seedling establishment and vigor, delayed flowering and reduced plant height at maturity. These lines also had 7–11% reductions in seed oil content. Our results extend understanding of the B. napusFAD2 isozymes and define the practical limit to increasing oil oleate content in this crop species.  相似文献   

11.
In this work, a novel route to synthesize biomolecule/metal composite nanospheres is proposed. This method combines the advantages that the silver nanoparticles and bovine serum albumin (BSA) can be precipitated simultaneously from water-in-oil microemulsion by the easy control of CO2 pressure, which was revealed by our high-pressure UV-VIS spectra. The Ag/BSA nanocomposites were successfully prepared using this method. The transmission electronic microscopy (TEM) if the obtained nanocomposites shows that the small-sized Ag nanaoparticles are immobilized by the BSA nanospheres, and the phase structure was characterized by X-ray diffraction (XRD). The Ag/BSA nanocomposites show absorption properties at a wavelength around 435 nm.  相似文献   

12.
13.
Although the biochemical and genetic basis of lipid metabolism is clear in Arabidopsis, there is limited information concerning the relevant genes in Glycine max (soybean). To address this issue, we constructed three‐dimensional genetic networks using six seed oil‐related traits, 52 lipid metabolism‐related metabolites and 54 294 SNPs in 286 soybean accessions in total. As a result, 284 and 279 candidate genes were found to be significantly associated with seed oil‐related traits and metabolites by phenotypic and metabolic genome‐wide association studies and multi‐omics analyses, respectively. Using minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) analyses, six seed oil‐related traits were found to be significantly related to 31 metabolites. Among the above candidate genes, 36 genes were found to be associated with oil synthesis (27 genes), amino acid synthesis (four genes) and the tricarboxylic acid (TCA) cycle (five genes), and four genes (GmFATB1a, GmPDAT, GmPLDα1 and GmDAGAT1) are already known to be related to oil synthesis. Using this information, 133 three‐dimensional genetic networks were constructed, 24 of which are known, e.g. pyruvate–GmPDATGmFATA2–oil content. Using these networks, GmPDAT, GmAGT and GmACP4 reveal the genetic relationships between pyruvate and the three major nutrients, and GmPDAT, GmZF351 and GmPgs1 reveal the genetic relationships between amino acids and seed oil content. In addition, GmCds1, along with average temperature in July and the rainfall from June to September, influence seed oil content across years. This study provides a new approach for the construction of three‐dimensional genetic networks and reveals new information for soybean seed oil improvement and the identification of gene function.  相似文献   

14.
15.
16.
17.
Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic‐resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil‐in‐water nano‐emulsion. Nano‐emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano‐emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage‐loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18–20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage‐emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano‐emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti‐microbial wound management strategies. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:932–944, 2014  相似文献   

18.
Using sticky traps, we compared the efficacy of chemical and visual lures, both alone and in combination, for improving the detection of populations of the emerald ash borer (EAB), Agrilus planipennis. Ash leaflets to which EAB visual decoys were pinned and coated with sticky material were able to trap EAB with as high a rate of detection as large sticky visually unbaited ‘prism traps’ currently used in wide‐scale EAB surveillance programs in North America, in a high‐density area. Both the sticky leaf traps and prism traps captured more EAB when a point source of plant odours, either manuka or phoebe oil, was deployed with the trap. For the sticky leaf traps, the shape of the EAB visual decoy lure was found to be important in optimizing the detection rate. Either an entire dead beetle or else two elytra placed side by side to mimic a resting beetle resulted in optimal trap performance. When two elytra were placed end to end or else other body parts were deployed, the traps lost their efficacy. Small green plastic surfaces to which EAB visual decoys were pinned were found to be fairly good substitutes for live ash leaflets, but the rate of beetle detection was reduced significantly from that of the ash leaflet plus EAB decoy. Throughout all experiments, a clear male bias occurred in sticky leaf traps when EAB visual decoys were placed on the traps. The implications of these findings for developing new trapping designs for EAB and other forest buprestids are discussed.  相似文献   

19.
20.
Three‐photon microscopy excited at the 1700‐nm window (roughly covering 1600‐1840 nm) is especially suitable for deep‐brain imaging in living animals. To match the brain refractive index, D2O has been exclusively used as the immersion medium. However, the hygroscopic property of D2O leads to a decrease of transmittance of the excitation light and as a result a decrease in three‐photon signals over time. Solutions such as replacing D2O from time to time, wrapping both the objective lens and the immersion D2O, and sealing D2O with paraffin liquid have all been demonstrated, which add to the system complexity. Based on our recent characterization of immersion oils, we propose using silicone oil as a potential alternative to D2O for deep‐brain imaging. Excited at 1600 nm, our comparative deep‐brain imaging using both D2O and silicone oil immersion show that silicone oil immersion yields 17% higher three‐photon signal in third‐harmonic generation imaging within the white matter. Besides, silicone oil immersion also enables three‐photon fluorescence imaging of vasculature up to 1460 μm (mechanical depth) into the mouse brain in vivo acquired at 2 seconds/frame. Together with the nonhygroscopic physical property, silicone oil is promising for long‐span three‐photon brain imaging excited at the 1700‐nm window.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号