首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The use of electromagnetic fields (EMFs) to treat nonunion fractures developed from observations in the mid‐1900s. Whether EMF directly regulates the bone marrow mesenchymal stem cells (MSCs), differentiating into osteoblasts or adipocytes, remains unknown. In the present study, we investigated the roles of sinusoidal EMF of 15 Hz, 1 mT in differentiation along these separate lineages using rat bone marrow MSCs. Our results showed that EMF promoted osteogenic differentiation of the stem cells and concurrently inhibited adipocyte formation. EMF increased alkaline phosphatase (ALP) activity and mineralized nodule formation, and stimulated osteoblast‐specific mRNA expression of RUNX2, ALP, BMP2, DLX5, and BSP. In contrast, EMF decreased adipogenesis and inhibited adipocyte‐specific mRNA expression of adipsin, AP‐2, and PPARγ2, and also inhibited protein expression of PPARγ2. These observations suggest that commitment of MSCs into osteogenic or adipogenic lineages is influenced by EMF. Bioelectromagnetics 31:277–285, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Transplanting stem cells differentiated towards a cardiac lineage can regenerate cardiac muscle tissues to treat myocardial infarction. In this study, we tested the hypothesis that transforming growth factor‐β1 (TGF‐β1) induces cardiomyogenic differentiation of adipose‐ derived stromal cells (ADSCs) in vitro. Rat ADSCs were cultured with TGF‐β1 (10 ng ml?1) for 2 weeks in vitro. ADSCs cultured without TGF‐β1 served as a control. The mRNA expression of cardiac‐specific gene was induced by TGF‐β1, while the control culture did not show cardiac‐specific gene expression. Immunocytochemical analyses showed that a small fraction of ADSCs cultured with TGF‐β1 for 2 weeks stained positively for cardiac myosin heavy chain (MHC) and α‐sarcomeric actin. Flow cytometric analyses showed that the proportion of cells expressing cardiac MHC increased with TGF‐β1. However, no mesenchymal differentiation (e.g., osteogenic and adipogenic differentiation) was detected other than cardiomyogenic differentiation. These results showed that TGF‐β1 induce ADSC cardiomyogenic differentiation in vitro, which could be useful for myocardial infarction stem cell therapy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Low magnitude high frequency vibration (LMHFV) exhibits effectively anabolic effects on the bone tissue, and can promote osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro. The role of p38 MAPK signaling in LMHFV-induced osteogenesis remains unclear. In this current study, LMHFV loading was applied to BMSCs in vitro, and cell proliferation, alkaline phosphatase (ALP), matrix mineralization, as well as osteogenic genes expression were assayed. The mechanism of mechanical signal transduction was analysed using PCR array, qRT-PCR and Western blot. LMHFV increased cell proliferation in the growth medium, while inhibited proliferation in the osteogenic medium. ALP activity, matrix mineralization and osteogenic genes expression of Runx2, Col-I, ALP, OPN and OC were increased by LMHFV. p38 and MKK6 genes expression, and p38 phosphorylation were promoted in LMHFV-induced osteogenesis. Inhibition of p38 MAPK with SB203580 and targeted p38 siRNA blunted the increased ALP activity and osteogenic genes expression by LMHFV. These findings suggest that LMHFV promotes osteogenic differentiation of BMSCs, and p38 MAPK signaling shows an important function in LMHFV-induced osteogenesis.  相似文献   

8.
9.
10.
Caveolin‐1 is a scaffolding protein of cholesterol‐rich caveolae lipid rafts in the plasma membrane. In addition to regulating cholesterol transport, caveolin‐1 has the ability to bind a diverse array of cell signaling molecules and regulate cell signal transduction in caveolae. Currently, there is little known about the role of caveolin‐1 in stem cells. It has been reported that the caveolin‐1 null mouse has an expanded population of cells expressing stem cell markers in the gut, mammary gland, and brain, suggestive of a role for caveolin‐1 in stem cell regulation. The caveolin‐1 null mouse also has increased bone mass and an increased bone formation rate, and its bone marrow‐derived mesenchymal stem cells (MSCs) have enhanced osteogenic potential. However, the role of caveolin‐1 in human MSC osteogenic differentiation remains unexplored. In this study, we have characterized the expression of caveolin‐1 in human bone marrow derived MSCs. We show that caveolin‐1 protein is enriched in density gradient‐fractionated MSC plasma membrane, consisting of ~100 nm diameter membrane‐bound vesicles, and is distributed in a punctate pattern by immunofluoresence localization. Expression of caveolin‐1 increases in MSCs induced to undergo osteogenic differentiation, and siRNA‐mediated knockdown of caveolin‐1 expression enhances MSC proliferation and osteogenic differentiation. Taken together, these findings suggest that caveolin‐1 normally acts to regulate the differentiation and renewal of MSCs, and increased caveolin‐1 expression during MSC osteogenesis likely acts as a negative feedback to stabilize the cell phenotype. J. Cell. Biochem. 113: 3773–3787, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
ADSCs (adipose‐derived mesenchymal stem cells) are candidate adult stem cells for regenerative medicine. Notch signalling participates in the differentiation of a heterogeneous ADSC population. We have isolated, human adipose tissue‐derived single‐cell clones using a cloning ring technique and characterized for their stem cell characteristics. The role of Notch signalling in the differentiation capacity of these adipose‐derived single‐cell‐clones has also been investigated. All 14 clones expressed embryonic and mesenchymal stem cell marker genes. These clones could differentiate into both osteogenic and adipogenic lineages. However, the differentiation potential of each clone was different. Low adipogenic clones had significantly higher mRNA expression levels of Notch 2, 3 and 4, Jagged1, as well as Delta1, compared with those of high adipogenic clones. In contrast, no changes in expression of Notch signalling component mRNA between low and high osteogenic clones was found. Notch receptor mRNA expression decreased with the adipogenic differentiation of both low and high adipogenic clones. The γ‐secretase inhibitor, DAPT (N‐[N‐(3,5‐difluorophenacetyl)‐l ‐alanyl]‐(S)‐phenylglycine t‐butyl ester), enhanced adipogenic differentiation. Correspondingly, cells seeded on a Notch ligand (Jagged1) bound surface showed lower intracellular lipid accumulation. These results were noted in both low and high adipogenic clones, indicating that Notch signalling inhibited the adipogenic differentiation of adipose ADSC clones, and could be used to identify an adipogenic susceptible subpopulation for soft‐tissue augmentation application.  相似文献   

12.
Mesenchymal stem cells (MSCs) can differentiate into neurons in an appropriate cellular environment. Retinoid signaling pathway is required in neural development. However, the effect and mechanism through retinoid signaling regulates neuronal differentiation of MSCs are still poorly understood. Here, we report that all‐trans‐retinoic acid (ATRA) pre‐induction improved neuronal differentiation of rat MSCs. We found that, when MSCs were exposed to different concentrations of ATRA (0.01–100 μmol/L) for 24 h and then cultured with modified neuronal induction medium (MNM), 1 μmol/L ATRA pre‐induction significantly improved neuronal differentiation efficiency and neural‐cell survival. Compared with MNM alone induced neural‐like cells, ATRA/MNM induced cells expressed higher levels of Nestin, neuron specific enolase (NSE), microtubule‐associated protein‐2 (MAP‐2), but lower levels of CD68, glial fibrillary acidic protein (GFAP), and glial cell line‐derived neurotrophic factor(GDNF), also exhibited higher resting membrane potential and intracellular calcium concentration, supporting that ATRA pre‐induction promotes maturation and function of derived neurons but not neuroglia cells from MSCs. Endogenous retinoid X receptors (RXR) RXRα and RXRγ (and to a lesser extent, RXRβ) were weakly expressed in MSCs. But the expression of RARα and RARγ was readily detectable, whereas RARβ was undetectable. However, at 24 h after ATRA treatment, the expression of RARβ, not RARα or RARγ, increased significantly. We further found the subnuclear redistribution of RARβ in differentiated neurons, suggesting that RARβ may function as a major mediator of retinoid signaling during neuronal differentiation from MSCs. ATRA treatment upregulated the expression of Vimentin and Stra13, while it downregulated the expression of Brachyury in MSCs. Thus, our results demonstrate that pre‐activation of retinoid signaling by ATRA facilitates neuronal differentiation of MSCs.  相似文献   

13.
Adipose‐derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs), which have promised a vast therapeutic potential in tissue regeneration. Recent studies have demonstrated that combining stem cells with mechanical stretch may strengthen the efficacy of regenerative therapies. However, the exact influences of mechanical stretch on MSCs still remain inconclusive. In this study, human ADSCs (hADSCs) were applied cyclic stretch stimulation under an in vitro stretching model for designated duration. We found that mechanical stretch significantly promoted the proliferation, adhesion and migration of hADSCs, suppressing cellular apoptosis and increasing the production of pro‐healing cytokines. For differentiation of hADSCs, mechanical stretch inhibited adipogenesis, but enhanced osteogenesis. Long‐term stretch could promote ageing of hADSCs, but did not alter the cell size and typical immunophenotypic characteristics. Furthermore, we revealed that PI3K/AKT and MAPK pathways might participate in the effects of mechanical stretch on the biological characteristics of hADSCs. Taken together, mechanical stretch is an effective strategy for enhancing stem cell behaviour and regulating stem cell fate. The synergy between hADSCs and mechanical stretch would most likely facilitate tissue regeneration and promote the development of stem cell therapy.  相似文献   

14.
This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Accelerated marrow adipogenesis has been associated with ageing and osteoporosis and is thought to be because of an imbalance between adipogenic and osteogenic differentiation of mesenchymal stem cell (MSCs). We have previously found that lysyl oxidase (Lox) inhibition disrupts BMP4‐induced adipocytic lineage commitment and differentiation of MSCs. In this study, we found that lox inhibition dramatically up‐regulates BMP4‐induced expression of CCAAT/enhancer binding protein (C/EBP) homologous protein 10 (CHOP‐10), which then promotes BMP4‐induced osteogenesis of MSCs both in vitro and in vivo. Specifically, Lox inhibition or CHOP‐10 up‐regulation activated Wnt/β‐catenin signalling to enhance BMP4‐induced osteogenesis, with pro‐adipogenic p38 MAPK and Smad signalling suppressed. Together, we demonstrate that Lox/CHOP‐10 crosstalk regulates BMP4‐induced osteogenic and adipogenic fate determination of MSCs, presenting a promising therapeutic target for osteoporosis and other bone diseases.  相似文献   

16.
17.
Type 2 diabetes mellitus (T2DM) is the most common diabetes and has numerous complications. Recent studies demonstrated that T2DM compromises bone fracture healing in which miR‐222 might be involved. Furthermore, tissue inhibitor of metalloproteinase 3 (TIMP‐3) that is the target of miR‐222 accelerates fracture healing. Therefore, we assume that miR‐222 could inhibit TIMP‐3 expression. Eight‐week‐old rats were operated femoral fracture or sham, following the injection of streptozotocin (STZ) to induce diabetes one week later in fractured rats, and then, new generated tissues were collected for measuring the expression of miR‐222 and TIMP‐3. Rat mesenchymal stem cells (MSCs) were isolated and treated with miR‐222 mimic or inhibitor to analyse osteogenic differentiation. MiR‐222 was increased in fractured rats and further induced in diabetic rats. In contrast, TIMP‐3 was reduced in fractured and further down‐regulated in diabetic rats. Luciferase report assay indicated miR‐222 directly binds and mediated TIMP‐3. Furthermore, osteogenic differentiation was suppressed by miR‐222 mimic and promoted by miR‐222 inhibitor. miR‐222 is a key regulator that is promoted in STZ‐induced diabetic rats, and it binds to TIMP3 to reduce TIMP‐3 expression and suppressed MSCs’ differentiation.  相似文献   

18.
Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross‐talks with BMP9 and regulates BMP9‐induced osteogenic differentiation. We find that EGF potentiates BMP9‐induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG‐1478 and AG‐494 in a dose‐ and time‐dependent manner. Furthermore, EGF significantly augments BMP9‐induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9‐induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up‐regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross‐talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine.  相似文献   

19.
20.
Osteoporosis is closely associated with the dysfunction of bone metabolism, which is caused by the imbalance between new bone formation and bone resorption. Osteogenic differentiation plays a vital role in maintaining the balance of bone microenvironment. The present study investigated whether melatonin participated in the osteogenic commitment of bone marrow mesenchymal stem cells (BMSCs) and further explored its underlying mechanisms. Our data showed that melatonin exhibited the capacity of regulating osteogenic differentiation of BMSCs, which was blocked by its membrane receptor inhibitor luzindole. Further study demonstrated that the expression of miR‐92b‐5p was up‐regulated in BMSCs after administration of melatonin, and transfection of miR‐92b‐5p accelerated osteogenesis of BMSCs. In contrast, silence of miR‐92b‐5p inhibited the osteogenesis of BMSCs. The increase in osteoblast differentiation of BMSCs caused by melatonin was attenuated by miR‐92b‐5p AMO as well. Luciferase reporter assay, real‐time qPCR analysis and western blot analysis confirmed that miR‐92b‐5p was involved in osteogenesis by directly targeting intracellular adhesion molecule‐1 (ICAM‐1). Melatonin improved the expression of miR‐92b‐5p, which could regulate the differentiation of BMSCs into osteoblasts by targeting ICAM‐1. This study provided novel methods for treating osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号