首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
肺癌仍然是现在最常见的恶性肿瘤之一。小细胞肺癌(Smallcelllungcancer,SCLC)是肺癌中恶性程度最高的一种类型,与吸烟密切相关,其较早发生远处转移和播散导致预后差,目前的主要治疗手段有手术、化学治疗、放射治疗。但其具有初始化放疗敏感,却很快耐受的特点,导致了它总体预后不良,生存期短。如何寻求一种有效的疾病预后、疗效判断标记物,显得尤为重要。本文主要介绍近年来在小细胞肺癌中分子标记物的研究进展,包括神经内分泌的相关蛋白、凋亡蛋白抑制剂(Survivin)、相关酶类及膜蛋白,这些分子标记物与小细胞肺癌疾病的进展、预后密切相关,能够为临床的疾病治疗评估提供潜在可行的方法。但是,这些标记物仍存在特异性不高的问题,最终应用于临床实践,仍需要更多的临床研究。  相似文献   

2.
Despite of several decades of efforts,lung cancer remains one of most deadly diseases,with a 5-year survival rate approximately 15% worldwide.In China,the situation is even worse.Although there is no o...  相似文献   

3.
The long noncoding RNAs (lncRNAs) SBF2 antisense RNA 1 (SBF2-AS1) was found to act as an oncogenic lncRNA in non–small-cell lung cancer (NSCLC), but the role of SBF2-AS1 in small-cell lung cancer (SCLC) was still unclear. The purpose of this study was to provide the clinical significance and biological function of SBF2-AS1 in SCLC. In our results, SBF2-AS1 was found to be upregulated in SCLC tissues compared with NSCLC tissues or adjacent normal lung tissues. Besides, SBF2-AS1 expression was also elevated in SCLC cell lines compared with the normal bronchial epithelial cell line or NSCLC lines. Moreover, high expression of SBF2-AS1 was associated with clinical stage, tumor size, lymph node metastasis and distant metastasis in SCLC patients. Survival analysis showed SCLC patients with high expression of SBF2-AS1 had shorter overall survival than patients with low expression of SBF2-AS1, and high expression of SBF2-AS1 acted as an independent poor prognostic factor for overall survival in SCLC patients. The study in vitro suggested inhibition of SBF2-AS1 obviously depressed cell proliferation, migration, and invasion in SCLC. In conclusion, SBF2-AS1 acts as a novel oncogenic lncRNA in SCLC.  相似文献   

4.
Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC) has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic efficiency in the detection of tumor progression in lung cancer. The current knowledge on the known serum cytokines and tumor biomarkers of SCLC is emphasized. Recent findings in the search for novel diagnostic and therapeutic molecular markers using the emerging genomic technology for detecting lung cancer are also described. It is believed that implementing these new research techniques will facilitate and improve early detection, prognostication and better treatment of SCLC.  相似文献   

5.
Although small‐cell lung cancer (SCLC) accounts for a small fraction of lung cancer cases (~15%), the prognosis of patients with SCLC is poor with an average overall survival period of a few months without treatment. Current treatments include standard chemotherapy, which has minimal efficacy and a newly developed immunotherapy that thus far, benefits a limited number of patients. In the current study, we screened a natural product library and identified 5 natural compounds, in particular tubercidin and lycorine HCl, that display prominent anti‐SCLC activities in vitro and in vivo. Subsequent RNA‐sequencing and functional validation assays revealed the anti‐SCLC mechanisms of these new compounds, and further identified new cellular factors such as BCAT1 as a potential therapeutic target with clinical implication in SCLC patients. Taken together, our study provides promising new directions for fighting this aggressive lung cancer.  相似文献   

6.
Fibroblast growth factor receptor‐like 1 (FGFRL1), a member of the FGFR family, has been demonstrated to play important roles in various cancers. However, the role of FGFRL1 in small‐cell lung cancer (SCLC) remains unclear. Our study aimed to investigate the role of FGFRL1 in chemoresistance of SCLC and elucidate the possible molecular mechanism. We found that FGFRL1 levels are significantly up‐regulated in multidrug‐resistant SCLC cells (H69AR and H446DDP) compared with the sensitive parental cells (H69 and H446). In addition, clinical samples showed that FGFRL1 was overexpressed in SCLC tissues, and high FGFRL1 expression was associated with the clinical stage, chemotherapy response and survival time of SCLC patients. Knockdown of FGFRL1 in chemoresistant SCLC cells increased chemosensitivity by increasing cell apoptosis and cell cycle arrest, whereas overexpression of FGFRL1 in chemosensitive SCLC cells produced the opposite results. Mechanistic investigations showed that FGFRL1 interacts with ENO1, and FGFRL1 was found to regulate the expression of ENO1 and its downstream signalling pathway (the PI3K/Akt pathway) in SCLC cells. In brief, our study demonstrated that FGFRL1 modulates chemoresistance of SCLC by regulating the ENO1‐PI3K/Akt pathway. FGFRL1 may be a predictor and a potential therapeutic target for chemoresistance in SCLC.  相似文献   

7.
Small cell lung cancer (SCLC) is a severe malignant with high morbidity; however, few effective and secure therapeutic strategy is used in current clinical practice. Oridonin is a small molecule from the traditional Chinese herb Rabdosia rubescens. This study mainly aimed to investigate the role of oridonin on inhibiting the process of H1688, a kind of small cell lung cancer cells from human. Oridonin could suppress H1688 cell proliferation and induce their apoptosis in a high dosage treatment (20 μmol/L). Meanwhile, cell migration was suppressed by oridonin (5 and 10 μmol/L) that did not affect cell proliferation and apoptosis. The expression level of E‐cadherin was significantly increased, and the expression of vimentin, snail and slug was reduced after administration of oridonin. These expression changes were associated with the suppressed integrin β1, phosphorylation of focal adhesion kinase (FAK) and ERK1/2. In addition, oridonin (5 and 10 mg/kg) inhibited tumour growth in a nude mouse model; however, HE staining revealed a certain degree of cytotoxicity in hepatic tissue after treatment oridonin (10 mg/kg). Furthermore, the concentration of alanine aminotransferase (ALP) was significantly increased and lactate dehydrogenase (LDH) was reduced after oridonin treatment (10 mg/kg). Immunohistochemical analysis further revealed that oridonin increased E‐cadherin expression and reduced vimentin and phospho‐FAK levels in vivo. These findings indicated that oridonin can inhibit the migration and epithelial‐to‐mesenchymal transition (EMT) of SCLC cells by suppressing the FAK‐ERK1/2 signalling pathway. Thus, oridonin may be a new drug candidate to offer an effect of anti‐SCLC with relative safety.  相似文献   

8.
Lung carcinoid cell lines have bombesin-like peptides and EGF receptors   总被引:1,自引:0,他引:1  
The biochemical properties of lung cancer cell lines were investigated. Bombesin-like peptides were present in three small cell lung cancer (SCLC) cell lines examined and three of four lung carcinoids but not in five non-small cell lung cancer (NSCLC) cell lines. Therefore SCLC and some lung carcinoids, but not NSCLC, are enriched in neuroendocrine properties. In contrast, 125I-EGF bound with high affinity to all five NSCLC cell lines and three of four lung carcinoids but not to the three SCLC cell lines examined. For lung carcinoid cell line NCI-H727, 125I-EGF bound with high affinity (Kd = 6 nM) to a single class of sites (Bmax = 110,000/cell). The 125I-EGF bound was rapidly internalized at 37 degrees C but not 4 degrees C. Using Western blot techniques and antiphosphotyrosine antibodies, EGF induced phosphorylation of a major 170 Kd protein. Using immunoprecipitation techniques and anti-EGF receptor antibodies a major 170 Kd protein was labeled. These data indicate that biologically active EGF receptors are present on NSCLC and lung carcinoid cell lines.  相似文献   

9.
The last decades have seen no significant progress in extending the survival of lung cancer patients and there is an urgent need to improve current therapies. The substance P (SP)/neurokinin-1 receptor (NK-1R) system plays an important role in the development of cancer: SP and NK-1R antagonists respectively induce cell proliferation and inhibition in human cancer cell lines. No study of the involvement of this system in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cells has been carried out in depth. Here, we demonstrate the involvement of the SP/NK-1R system in human H-69 (SCLC) and COR-L23 (NSCLC) cell lines: (1) they express isoforms of the NK-1R and mRNA for the NK-1R; (2) they overexpress the tachykinin 1 gene; (3) the NK-1R is involved in their viability; (4) SP induces their proliferation; (5) NK-1R antagonists (Aprepitant (Emend), L-733,060, L-732,138) inhibit the growth of both cell lines in a concentration-dependent manner; (6) the specific antitumor action of these antagonists against such cells occurs through the NK-1R; and (7) lung cancer cell death is due to apoptosis. We also demonstrate the presence of NK-1Rs and SP in all the human SCLC and NSCLC samples studied. Our findings indicate that the NK-1R may be a promising new target in the treatment of lung cancer and that NK-1R antagonists could be new candidate antitumor drugs in the treatment of SCLC and NSCLC.  相似文献   

10.
This paper summarizes results from two large lung cancer studies comprising over 700 samples that demonstrate the ability of spectral histopathology (SHP) to distinguish cancerous tissue regions from normal tissue, to differentiate benign lesions from normal tissue and cancerous lesions, and to classify lung cancer types. Furthermore, malignancy‐associated changes can be identified in cancer‐adjacent normal tissue. The ability to differentiate a multitude of normal cells and tissue types allow SHP to identify tumor margins and immune cell infiltration. Finally, SHP easily distinguishes small cell lung cancer (SCLC) from non‐SCLC (NSCLC) and provides a further differentiation of NSCLC into adenocarcinomas and squamous cell carcinomas with an accuracy comparable of classical histopathology combined with immunohistochemistry. Case studies are presented that demonstrates that SHP can resolve interobserver discrepancies in standard histopathology.  相似文献   

11.
Lung cancer is among the most common cancers, and the current therapeutic strategies are still inefficient in most cases. Tumour necrosis factor‐related apoptosis‐inducing ligand (TRAIL) is a promising biological agent for cancer treatment because of its potent pro‐apoptotic effect on cancer cells. However, TRAIL also induces apoptosis in normal cells and therefore may cause toxicity to normal tissues if clinically applied. To address this issue, we inserted microRNA response elements (MREs) of miR‐133a, miR‐137 and miR‐449a, which are all underexpressed in lung cancer cells, into an adenoviral vector to regulate TRAIL expression. This MRE‐regulated vector (Ad‐TRAIL‐MRE) was able to express TRAIL in a lung‐cancer‐specific fashion. No TRAIL expression was detected in normal cells. Consistently, Ad‐TRAIL‐MRE exerted cytotoxicity to lung cancer cells, rather than normal cells, perhaps via inducing selective apoptosis. The selective TRAIL‐mediated growth‐inhibiting effect was further confirmed in a tumour xenograft model. Also, Ad‐TRAIL‐MRE only resulted in very low hepatotoxicity when applied. Collectively, we generated a novel TRAIL‐expressing adenoviral vector that was regulated by MREs. This strategy permits TRAIL expression in a lung‐cancer‐specific manner and is worth further studying for clinical trials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
There are multiple reports of autoimmune response in patients with lung cancer. To investigate whether a novel autoantibody is present in patients with lung cancer and evaluate its clinical diagnostic and prognostic value, sera from 10 patients with lung cancer and 10 normal individuals were analyzed using immunofluorescence and Western blotting. It was found that one serum sample from the patients with squamous carcinoma gave a fine speckled pattern staining in nucleus and had a high titer antinuclear autoantibody which could recognize 31 kD of nuclear protein isolated from both cancer cells and normal cells. The same patient’s serum was further used to immunoprecipitate the target antigen. The protein bands were excised from the SDS-PAGE gels and were analyzed with a Qstar Pulser I Quadrupole time-flight mass spectrometer, and the 31 kD target antigen was identified as U1-AsnRNP. To test the prevalence of anti-U1-AsnRNP antibody, sera from 93 patients including 36 squmaous carcinomas (SCC), 26 adenocarcinomas (Ad), and 31 small cell carcinomas (SCLC) were screened by Western blotting. The results demonstrated that anti-U1-A snRNP antibody was present in 50% of SCC sera, 26.9% of Ad sera and 54.8% of SCLC sera. In this paper, we report for the first time that anti-U1-AsnRNP antibody could be detected in the patients with lung cancer.  相似文献   

13.
14.
15.
16.
Autoantibodies are frequently observed in sera of patients with malignancies and generally have been thought to be nonspecific and a reflection of can cer-related general immune system dysfunction. In the previous study, it was reported that autoimmune responses to cell cycle-regulatory proteins and nuclear proteins were present in cancer patients. For example, the antibody against human p53 protein was found in 20%―40% of esophageal carcinoma and oral squa- mous cell carcinoma[1], autoantibo…  相似文献   

17.
Summary We have developed a screening strategy and technology to produce monoclonal antibodies with specificity for human lung cancer cells. Mice and rats were immunized with well-characterized tissue culture lines of human small cell lung cancer (SCLC), mouse myeloma x spleen hybrids formed by the technique of Kohler and Milstein, and the resulting culture fluids were screened for antibody binding phenotype using a radioimmunoassay. To facilitate testing large numbers of culture fluids, a 96-well, microtiter based, resuable, replicating device was designed. Using this, many hybridoma culture fluids were replica plated for antibody binding tests on a series of human target cell plates. Hybrids producing antibodies that reacted with the immunizing SCLC line and another independent SCLC line, but not with autologous B-lymphoblastoid cells derived from one of the patients, were identified, selected, and then repeatedly recloned using the same screening strategy. With this technology, hybridomas representing less than 0.5% of all hybrids generated could be isolated and stable antibody producing cultures derived. Such antibodies reacted with a panel of well-characterized SCLC lines and SCLC samples taken directly from patients but not with a variety of normal tissues. Using these antibodies we can demonstrate: tumor cell contamination of bone marrow specimens, marked heterogeneity of antigen expression on cells within individual SCLC lines and individual patients, and inhibition of clonal growth of SCLC lines in soft agarose assays. All of these findings have potential clinical and cell biologic application. Presented in the symposium on The Biology of Hybridomas at the 32nd Annual Meeting of the Tissue Culture Association, Washington, D.C., June 7–11, 1981. This symposium was supported in part by the following organizations: Bethesda Research Laboratories, Cetus Corporation, Hybritech Incorporated, MAB-Monoclonal Antibodies, Inc., National Capital Area Branch of the Tissue Culture Association, New England Nuclear Corporation, and Ortho Pharmaceutical Corporation.  相似文献   

18.
Lung cancer is a clinically difficult disease with rising disease burden around the world. Unfortunately, most lung cancers present at a clinically advanced stage. Of these cancers, many also present with brain metastasis which complicates the clinical picture. This review summarizes current knowledge on the molecular basis of lung cancer brain metastases. We start from the clinical perspective, aiming to provide a clinical context for a significant problem that requires much deeper scientific investigation. We review new research governing the metastatic process, including tumor cell signaling, establishment of a receptive tumor niches in the brain and evaluate potential new therapeutic options that take advantage of these new scientific advances.Lung cancer remains the largest single cause of cancer mortality in the United States (Siegel et al., 2015). This continues to be the clinical picture despite significant advances in therapy, including the advent of targeted molecular therapies and newly adopted immunotherapies for certain subtypes of lung cancer. In the vast majority of cases, lung cancer presents as advanced disease; in many instances, this advanced disease state is intimately associated with micro and macrometastatic disease (Goldberg et al., 2015). For both non-small cell lung cancer and small cell lung cancer patients, the predominant metastatic site is the brain, with up to 68% of patients with mediastinal lymph node metastasis eventually demonstrating brain metastasis (Wang et al., 2009).The frequency (incidence) of brain metastasis is highest in lung cancers, relative to other common epithelial malignancies (Schouten et al., 2002). Other studies have attempted to predict the risk of brain metastasis in the setting of previously non-metastatic disease. One of the largest studies to do this, analyzing historical data from 1973 to 2011 using the SEER database revealed a 9% risk of patients with previously non-metastatic NSCLC developing brain metastasis over the course of their disease, while 18% of small cell lung cancer patients without previous metastasis went on to develop brain metastasis as their disease progressed (Goncalves et al., 2016).The reasons underlying this predilection for the central nervous system, as well as the recent increase in the frequency of brain metastasis identified in patients remain important questions for both clinicians and basic scientists. More than ever, the question of how brain metastasis develop and how they can be treated and managed requires the involvement of interdisciplinary teams—and more importantly—scientists who are capable of thinking like clinicians and clinicians who are capable of thinking like scientists. This review aims to present a translational perspective on brain metastasis. We will investigate the scope of the problem of brain metastasis and the current management of the metastatic disease process in lung cancer. From this clinical starting point, we will investigate the literature surrounding the molecular underpinnings of lung tumor metastasis and seek to understand the process from a biological perspective to generate new hypotheses.  相似文献   

19.
Circular RNA is a newly discovered member of non-coding RNA (ncRNA) and regulates the target gene by acting as a micro-RNA sponge. It plays vital roles in various diseases. However, the functions of circular RNA in non-small cell lung cancer (NSCLC) remain still unclear. Our data showed that circ-WHSC1 was highly expressed in NSCLC cells and tissues. Both in vitro and in vivo experiments showed that circ-WHSC1 promoted NSCLC proliferation. circ-WHSC1 also promoted the migration and invasion of lung cancer cells. Through bioinformatic analysis and functional experiments, we showed that circ-WHSC1 could act as a sponge for micro-RNA-7 (miR-7) and regulate the expression of TAB2 (TGF-beta activated kinase one binding protein two). Inhibition of the circ-WHSC1/miR-7/TAB2 pathway could effectively attenuate lung cancer progression. In summary, this study confirmed the existence and oncogenic function of circ-WHSC1 in NSCLC. The research suggests that the circ-WHSC1/miR-7/TAB2 axis might be a potential target for NSCLC therapy.  相似文献   

20.
Brain angiogenesis inhibitor protein 3 (BAI3) is from the adhesion group of seven-transmembrane spanning G protein-coupled receptors (GPCRs) and has been identified via gene expression profiling as being upregulated in small-cell lung cancer (SCLC) tumors. It has subsequently been validated as a sensitive and specific immunohistochemical marker for SCLC, helping to differentiate these tumors from morphologically similar large-cell neuroendocrine (LCNEC) malignancies. It is, however, still unclear as to the role BAI3 proteins might play in SCLC and indeed how they might contribute to tumorigenesis. Interestingly, the pattern of staining observed on immunohistochemistry was in fact nuclear as opposed to the membranous staining pattern expected of transmembrane-bound molecules. This fact has lead the authors to believe that the protein receptor is structurally altered in SCLC and that this modification may confer different behavioral properties that contribute toward tumorigenesis. Nuclear localization is not unique to BAI3 and has been reported in a number of GPCRs and frequently correlates with survival outcomes. BAI3 has the potential to act as target for pharmaceutical intervention inline with developing trends in molecular pathology aiming to provide personalized, treatment regimes based on tumor-specific mutation profiles. The adhesion group of the GPCR superfamily is still poorly understood. We present a review of the existing literature regarding the role they play in both physiological and disease states and the mechanisms by which they influence a range of cellular processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号