首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigated the protective effect of curcumin and mitochondrial‐targeted curcumin (MTC) in rotenone‐induced cerebellar toxicity in mice. Treatment of rotenone in mice significantly shortened the stride length for both forelimb and hind‐limb and increased fore‐paws and hind‐limb base width. Co‐treatment of curcumin and MTC with rotenone improved the walking pattern. A significant increase in lipid peroxidation, nitric oxide and decreased activity of AChE, reduced glutathione, superoxide dismutase and catalase were observed in rotenone‐treated mice while co‐treatment of curcumin and MTC with rotenone significantly increased AChE activity and protected against rotenone‐induced oxidative damage. Rotenone exposed mice showed irregular, damaged Purkinje cells and perineuronal vacuolation while co‐treatment of curcumin and MTC with rotenone protected against rotenone‐induced cellular damage in these cells. The result exhibits that both curcumin and MTC showed protective effects against rotenone‐induced cerebellar toxicity in mice and MTC is more effective than curcumin.  相似文献   

2.
Nitric oxide synthase, induced by cytokines in insulin-containing cells, produces nitric oxide which inhibits function and may promote cell killing. Since glucagon was shown to prevent inducible nitric oxide synthase (iNOS) expression in rat hepatocytes it was of interest to examine the action of glucagon (and cyclic AMP) on iNOS induction in insulin-producing cells. Cultured RIN5F cells and primary rat and human islets of Langerhans were treated with interleukin 1beta (IL-1beta) or a combination of cytokines, and were co-treated or pre-treated with glucagon. In RIN5F cells, the activity of iNOS induced by IL-1beta (10 pM, 24 h), was significantly reduced by glucagon (1000 nM), which raises cyclic AMP, and by forskolin (1-10 microM), a non specific activator of adenylate cyclase. Glucagon and forskolin also decreased iNOS expression in RIN5F cells, and rat and human islets, as shown by Western blotting. The inhibitory action of IL-1beta (100 pM, 24 h) on rat islet insulin secretion was partially reversed by 1-h pre-treatment with glucagon (10-1000 nM), while the contrasting stimulatory effect of 48-h treatment with cytokines on insulin secretion from human islets was similarly prevented by glucagon (1000 nM) pre-treatment. These results suggest that glucagon inhibits iNOS expression in insulin-containing cells and imply that glucagon could modulate the inhibitory effects of cytokines.  相似文献   

3.
Curcumin has a protective role in placental diseases like preeclampsia and preterm birth. Very little is known about its functional effects on growth, angiogenesis, and epigenetic activities of human first trimester placenta. HTR8/SVneo trophoblasts cells were used as model for human first trimester placenta. Effects of curcumin (≥80%) in these cells were investigated using 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT), radioactive thymidine uptake, quantitative real‐time polymerase chain reaction (qRT‐PCR), promoter DNA methylation, qRT‐PCR array, tube formation, wound healing, and immunoblot assays. PC3 (prostate cancer), JEG‐3 (trophoblast), and HMEC‐1 (endothelial) cells were used as control in various experiments. Unlike in PC3 cells, curcumin stimulated growth, proliferation, and viability in HTR8/SVneo cells. Curcumin increased tube formation, and messenger RNA (mRNA) expression of angiogenic factors such as vascular endothelial growth factor A (VEGFA) and protein expression of proangiogenic factor VEGF receptor‐2 and fatty acid‐binding protein‐4 (FABP4) in these cells. Curcumin‐stimulated tube formation was associated with an increased expression of VEGFR2 and FABP4. The stimulatory effects of curcumin were inhibited by VEGFR2 (SU5416) and FABP4 (BMS309403) inhibitors. Curcumin also significantly increased both mRNA and protein expression of HLA‐G in HTR8/SVneo cells. Curcumin increased mRNA expression of DNMT3A and NOTCH signaling system whereas down‐regulated mRNA expression of HSD11β2. Curcumin enhanced hypomethylation of gene promoters against oxidative stress and DNA damage pathway mediators. Curcumin promotes cell growth, migration, and thus angiogenic potential of these cells. Increased expression of HLA‐G by curcumin, hitherto unknown, is a novel finding since HLA‐G not only favors the immune environment for invasive trophoblasts but also positively modulates angiogenesis.  相似文献   

4.
This study explored the effects involved in silencing CLIC4 on apoptosis and proliferation of mouse liver cancer Hca‐F and Hca‐P cells. A CLIC4‐target small interfering RNA (siRNA) was designed to compound into two individual complementary oligonucleotide chains. A process of annealing and connection to a pSilencer vector was followed by transfection with Hca‐F and Hca‐P cells. Quantitative real‐time polymerase chain reaction and Western blotting techniques were used to determine CLIC4 mRNA and protein expressions. CCK8 assay and flow cytometry were employed for analysis of the survival and apoptosis rate as well as the cell cycle in an octreotide‐induced apoptosis model. Expressions of caspase 3, caspase 9, and cleaved PARP were measured using Western blotting. The CLIC4 mRNA and protein expressions in Hca‐F and Hca‐P cells transfected by pSilencer‐CLIC4 siRNA plasmid in the blank group displayed remarkably decreased levels of expression, when compared with both the control and negative control (NC) groups. Decreased survival rates and cleaved PARP expression, increased cell apoptosis rate,expressions of caspase 3 and caspase 9 in Hca‐F and Hca‐P cells were detected in groups that had been cultured in a medium containing octreotide. The pSilencer‐CLIC4 siRNA‐2 group when compared with the control and NC groups exhibited decreased survival rates, cleaved PARP expression, increased cell apoptosis rates, and increased expressions of caspase 3 and caspase 9 of Hca‐F and Hca‐P cells. The results demonstrated that siRNA‐induced down‐regulation of CLIC4 could proliferation, while in turn promoting apoptosis of mouse liver cancer Hca‐F and Hca‐P cells. J. Cell. Biochem. 119: 659–668, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

5.
Diabetes mellitus is characterized by cytokine-induced insulitis and a deficit in beta-cell mass. Ligands for peroxisome proliferator-activated receptor-gamma (PPAR-gamma) have been shown to have anti-inflammatory effects in various experimental models. We questioned whether activation of endogenous PPAR-gamma by either PPAR-gamma ligands or adenoviral-directed overexpression of PPAR-gamma (Ad-PPAR-gamma) could inhibit cytokine-induced beta-cell death in RINm5F (RIN) cells, a rat insulinoma cell line. Treatment of RIN cells with interleukin-1 beta (IL-1 beta) and interferon-gamma (IFN-gamma) induced beta-cell damage through NF kappaB-dependent signaling pathways. Activation of PPAR-gamma by PPAR-gamma ligands or Ad-PPAR-gamma inhibited IL-1 beta and IFN-gamma-stimulated nuclear translocation of the p65 subunit and DNA binding activity. NF kappaB target gene expression and their product formation, namely inducible nitric oxide synthase and cyclooxygenase-2 were decreased by PPAR-gamma activation, as established by real-time PCR, Western blots and measurements of NO and PGE(2). The mechanism by which PPAR-gamma activation inhibited NF kappaB-dependent cell death signals appeared to involve the inhibition of I kappa B alpha degradation, evidenced by inhibition of cytokine-induced NF kappaB-dependent signaling events by Ad-I kappaB alpha (S32A, S36A), non-degradable I kappaB alpha mutant. I kappaB beta mutant, Ad-I kappaB beta (S19A, S23A) was not effective in preventing cytokine toxicity. Furthermore, a protective effect of PPAR-gamma ligands was proved by assaying for normal insulin secreting capacity in response to glucose in isolated rat pancreatic islets. The beta-cell protective function of PPAR-gamma ligands might serve to counteract cytokine-induced beta-cell destruction.  相似文献   

6.
Matrix metalloproteinases (MMPs) have critical functions in tumour vasculogenic mimicry (VM). This study explored the mechanisms underlying MMP‐13 and MMP‐2 regulation of tumour VM formation in large cell lung cancer (LCLC). In our study, laminin5 (Ln‐5) fragments cleaved by MMP‐2 promoted tubular structure formation by the LCLC cell lines H460 and H661 in three‐dimensional (3D) cultures. Transient up‐regulation of MMP‐13 or treatment with recombinant MMP‐13 protein abrogated tubular structure formation of H460 cells in 3D culture. Treated cells with Ln‐5 fragments cleaved by MMP‐2 stimulated EGFR and F‐actin expression. Ln‐5 fragments cleaved by MMP‐13 decreased EGFR/F‐actin expression and disrupted VM formation. MMP‐13 expression was negatively correlated with VM, Ln‐5 and EGFR in LCLC tissues and xenograft. In vivo experiments revealed that VM was decreased when the number of endothelium‐dependent vessels (EDVs) increased during xenograft tumour growth, whereas MMP‐13 expression was progressively increased. In conclusion, MMP‐2 promoted and MMP‐13 disrupted VM formation in LCLC by cleaving Ln‐5 to influence EGFR signal activation. MMP‐13 may regulate VM and EDV formation.  相似文献   

7.
Curcumin, a member of the curcuminoid family of compounds, is a yellow colored phenolic pigment obtained from the powdered rhizome of C. longa Linn. Recent studies have demonstrated that curcumin has protective effects against cerebral ischemia/reperfusion injury. However, little is known about its mechanism. In the present study, we tested the effects of curcumin in focal cerebral ischemia in rats and the possible mechanisms. Adult male Sprague–Dawley rats were treated with curcumin (100, 300 and 500 mg/kg) administered intraperitoneally after 60 min of occlusion (beginning of reperfusion). Neurological score and infarct volume were assessed at 24 and 72 h. Oxidative stress was evaluated by malondialdehyde assay and the apoptotic mechanisms were studied by Western blotting. Curcumin treatment significantly reduced infarct volume and improved neurological scores at different time points compared with the vehicle-treated group. Curcumin treatment decreased malondialdehyde levels, cytochrome c, and cleaved caspase 3 expression and increased mitochondrial Bcl-2 expression. Inhibition of oxidative stress with curcumin treatment improves outcomes after focal cerebral ischemia. This neuroprotective effect is likely exerted by antiapoptotic mechanisms.  相似文献   

8.
Articular cartilage damage and chondrocyte apoptosis are common features of rheumatoid arthritis and osteoarthritis. Recently, curcumin has been reported to exhibit protective effects on degeneration in articular cartilage diseases. However, the effects and mechanisms of curcumin on articular chondrocyte injury remain to be elucidated. The aim of the present study is to investigate the chondroprotective mechanisms of curcumin on interleukin-1β (IL-1β)-induced chondrocyte apoptosis in vitro. The results revealed that IL-1β decreased cell viability and induced apoptosis in primary articular chondrocytes. Curcumin pretreatment reduced IL-1β-induced articular chondrocyte apoptosis. In addition, treatment with curcumin increased autophagy in articular chondrocytes and protected against IL-1β-induced apoptosis. The curcumin-mediated protection against IL-1β induced apoptosis was abolished when cells were treated with the autophagy inhibitor 3-methyladenine or transfected with Beclin-1 small interfering RNA. Furthermore, IL-1β stimulation significantly increased the phosphorylation levels of nuclear factor (NF)-κB p65 and glycogen synthase kinase-3β, and decreased the phosphorylation levels of β-catenin in articular chondrocytes, and these alterations to the phosphorylation levels were partly reversed by treatment with curcumin. Dual-luciferase and electrophoretic mobility shift assays demonstrated that IL-1β increased NF-κB p65 promoter activity in chondrocytes, and this was also reversed by curcumin. Pretreatment with the NF-κB inhibitor pyrrolidine dithiocarbamate enhanced the protective effects of curcumin on chondrocyte apoptosis, but Wnt/β-catenin inhibitor, XAV-939, did not exhibit this effect. Molecular docking and dynamic simulation studies results showed that curcumin could bound to RelA (p65) protein. These results indicate that curcumin may suppress IL-1β-induced chondrocyte apoptosis through activating autophagy and restraining NF-κB signaling pathway.  相似文献   

9.
To study the effects of curcumin on human retinal pigment epithelial (RPE) cells exposed to high glucose (HG) insult, we performed in vitro studies on RPE cells cultured both in normal and HG conditions to assess the effects of curcumin on the cell viability, nuclear factor erythroid 2-related factor 2 (Nrf2) expression, HO-1 activity, and ERK1/2 expression. RPE cells exposed to HG insult were treated with curcumin. The cell viability, apoptosis, HO-1 activity, ERK, and Nrf2 expression were evaluated. The data indicated that treatment with curcumin caused a significant decrease in terms of apoptosis. Further, curcumin was able to induce HO-1 expression via Nrf2 activation and counteracts the damage elicited by HG. The present study demonstrated that curcumin provides protection against HG-induced damage in RPE cells through the activation of Nrf2/HO-1 signaling that involves the ERK pathway, suggesting that curcumin may have therapeutic value in the treatment of diabetic retinopathy.  相似文献   

10.
Objectives: Curcumin, a natural compound, is a potent anti‐cancer agent, which inhibits cell division and/or induces cell death. It is believed that normal cells are less sensitive to curcumin than malignant cells; however, the mechanism(s) responsible for curcumin’s effect on normal cells are poorly understood. The aim of this study was to verify the hypothesis that curcumin affects normal cell division by influencing microtubule stability, using mouse oocyte and early embryo model systems. Materials and methods: Maturating mouse oocytes and two‐cell embryos were treated with different concentrations of curcumin (10–50 μm ), and meiotic resumption and mitotic cleavage were analysed. Spindle and chromatin structure were visualized using confocal microscopy. In addition, acetylation and in vitro polymerization of tubulin, in the presence of curcumin, were investigated and the damage to double‐stranded DNA was studied using γH2A.X. CDK1 activity was measured. Results and conclusions: We have shown for the first time, that curcumin, in a dose‐dependent manner, delays and partially inhibits meiotic resumption of oocytes and inhibits meiotic and mitotic divisions by causing disruption of spindle structure and does not induce DNA damage. Our analysis indicated that curcumin affects CDK1 kinase activity but does not directly affect microtubule polymerization and tubulin acetylation. As our study showed that curcumin impairs generative and somatic cell division, its future clinical use or of its derivatives with improved bioavailability after oral administration, should take into consideration the possibility of extensive side‐effects on normal cells.  相似文献   

11.
细颗粒物(PM2.5)是空气动力学直径≤2.5 μm的颗粒物,能诱发多种疾病.已有大量的流行病学调查证实,PM2.5能够损伤生殖系统,但其致病机制不明确,相关的研究也非常有限.为研究PM2.5短期暴露对大鼠子宫的损伤,以及姜黄素(curcumin,CRC)对其保护作用,本研究将50只雌性SD大鼠随机分为生理盐水对照组、...  相似文献   

12.
目的:探索顺铂对胃组织Cajal间质细胞(Cajal interstitial cells,ICCs)结构和功能的损伤以及姜黄素的保护作用。方法:选用成年雄性昆明种小鼠,随机分为对照组、顺铂组和顺铂+姜黄素组,每组各10只。姜黄素(200 mg/kg/d)混悬液连续灌胃15天。顺铂于实验结束前5天开始腹腔注射(2 mg/kg/d)共5天。计算每只小鼠最后5天的体重增减值,停药24 h后测量小鼠的胃排空率。电镜检测胃组织ICC超微结构,并测定特异性反映ICC功能变化的Ano1蛋白和m RNA的表达情况。结果:注射顺铂后各组小鼠的体重和胃排空率均显著降低(P0.01);与顺铂组相比,姜黄素预先灌胃组小鼠体重下降较少(P0.01),胃排空率有所回升(P0.05)。注射顺铂后,胃组织中ICCs受损,尤其与周围神经和肌肉间的缝隙连接增大甚至断裂,而姜黄素可以减轻这种损伤。同时,顺铂组胃组织中Ano1 m RNA和蛋白表达均下降(P0.01),加姜黄素组有所改善(P0.05)。结论:而姜黄素可通过减轻顺铂所致胃组织ICC结构损伤以及增强Ano1表达进而增强ICC慢波起博功能。  相似文献   

13.
Alcohol-induced pancreas damage remains as one of the main risk factors for pancreatitis development. This disorder is poorly understood, particularly the effect of acetaldehyde, the primary alcohol metabolite, in the endocrine pancreas. Hepatocyte growth factor (HGF) is a protective protein in many tissues, displaying antioxidant, antiapoptotic, and proliferative responses. In the present work, we were focused on characterizing the response induced by HGF and its protective mechanism in the RINm5F pancreatic cell line treated with ethanol and acetaldehyde. RINm5F cells were treated with ethanol or acetaldehyde for 12 h in the presence or not of HGF (50 ng/ml). Cells under HGF treatment decreased the content of reactive oxygen species and lipid peroxidation induced by both toxics, improving cell viability. This effect was correlated to an improvement in insulin expression impaired by ethanol and acetaldehyde. Using a specific inhibitor of Erk1/2 abrogated the effects elicited by the growth factor. In conclusion, the work provides mechanistic evidence of the HGF-induced-protective response to the alcohol-induced damage in the main cellular component of the endocrine pancreas.  相似文献   

14.
Curcumin, a polyphenolic compound isolated from Curcuma longa (Turmeric) is widely used in traditional Ayurvedic medicine. Its potential therapeutic effects on a variety of diseases have long been known. Though anti‐tumour effects of curcumin have been reported earlier, its mode of action and telomerase inhibitory effects are not clearly determined in brain tumour cells. In the present study, we demonstrate that curcumin binds to cell surface membrane and infiltrates into cytoplasm to initiate apoptotic events. Curcumin treatment has resulted in higher cytotoxicity in the cells that express telomerase enzyme, highlighting its potential as an anticancer agent. Curcumin induced growth inhibition and cell cycle arrest at G2/M phase in the glioblastoma and medulloblastoma cells used in the study. Gene and protein expression analyses revealed that curcumin down‐regulated CCNE1, E2F1 and CDK2 and up‐regulated the expression of PTEN genes resulting in growth arrest at G2/M phase. Curcumin‐induced apoptosis is found to be associated with increased caspase‐3/7 activity and overexpression of Bax. In addition, down‐regulation of Bcl2 and survivin was observed in curcumin‐treated cells. Besides these effects, we found curcumin to be inhibiting telomerase activity and down‐regulating hTERT mRNA expression leading to telomere shortening. We conclude that telomerase inhibitory effects of curcumin underscore its use in adjuvant cancer therapy. J. Cell. Biochem. 114: 1257–1270, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Gastric cancer (GC) is one of the prevalent human malignancies and the third most common cause of cancer‐related death worldwide. The doxorubicin hydrochloride is one of the important chemotherapeutic anticancer agents, with a limited therapeutic efficacy for treatment of GC. Therefore, taking advantage of synergistic effects by strategies like combination therapy seems appropriate and promising in treatment of GC. The aim of this study was to investigate a novel method to enhance the therapeutic efficacy of doxorubicin (as a chemotherapeutic agent) by co‐administration of curcumin (as a bioactive herbal compound) in GC treatment. In the present study, the effects of curcumin, doxorubicin, and their combinations (Dox‐Cur) were evaluated on the viability, morphological features, tumor spheroid formation, migration, invasion, and apoptosis of gastric adenocarcinoma cell line (AGS). Moreover, expression levels of BAX, BCL‐2, and CASP9 genes were assessed among AGS cells treated with curcumin, doxorubicin, and Dox‐Cur. The obtained results showed that all of curcumin, doxorubicin, and Dox‐Cur treatments significantly decreased the viability, tumor spheroid formation, migration, and invasion in the GC model cells. Furthermore, apoptosis rates in AGS cells were increased in a concentration‐ and time‐dependent manner in all of the treatment groups. Moreover, the anticancer activity of the Dox‐Cur combination was significantly more than curcumin and doxorubicin treatments alone. According to the results, Dox‐Cur combination therapy exerts more profound apoptotic and anticancer effects on the AGS cell line than curcumin or doxorubicin monotherapy.  相似文献   

16.
17.
To investigate the protective effects of curcumin against amyloid-β (Aβ)-induced neuronal damage. Primary rat cortical neurons were cultured with different treatments of Aβ and curcumin. Neuronal morphologies, viability and damage were assessed. Neuronal oxidative stress was assessed, including extracellular hydrogen peroxide and intracellular reactive oxygen species. The abilities of curcumin to scavenge free radicals and to inhibit Aβ aggregation and β-sheeted formation are further assessed and discussed. Curcumin preserves cell viability, which is decreased by Aβ. The results of changed morphology, released Lactate dehydrogenases and cell viability assays indicate that curcumin protects Aβ-induced neuronal damage. Curcumin depresses Aβ-induced up-regulation of neuronal oxidative stress. The treatment sequence impacts the protective effect of curcumin on Aβ-induced neuronal damage. Curcumin shows a more protective effect on neuronal oxidative damage when curcumin was added into cultured neurons not later than Aβ, especially prior to Aβ. The abilities of curcumin to scavenge free radicals and to inhibit the formation of β-sheeted aggregation are both beneficial to depress Aβ-induced oxidative damage. Curcumin prevents neurons from Aβ-induced oxidative damage, implying the therapeutic usage for the treatment of Alzheimer's disease patients.  相似文献   

18.
Downhill running causes muscle damage, and induces oxidative stress and inflammatory reaction. Recently, it is shown that curcumin possesses anti-oxidant and anti-inflammatory potentials. Interestingly, curcumin reduces inflammatory cytokine concentrations in skeletal muscle after downhill running of mice. However, it is not known whether curcumin affects oxidative stress after downhill running-induced muscle damage. Therefore, the purpose of this study was to investigate the effects of curcumin on oxidative stress following downhill running induced-muscle damage. We also investigated whether curcumin affects macrophage infiltration via chemokines such as MCP-1 and CXCL14. Male C57BL/6 mice were divided into four groups; rest, rest plus curcumin, downhill running, or downhill running plus curcumin. Downhill running mice ran at 22 m/min, −15% grade on the treadmill for 150 min. Curcumin (3 mg) was administered in oral administration immediately after downhill running. Hydrogen peroxide concentration and NADPH-oxidase mRNA expression in the downhill running mice were significantly higher than those in the rest mice, but these variables were significantly attenuated by curcumin administration in downhill running mice. In addition, mRNA expression levels of MCP-1, CXCL14 and F4/80 reflecting presence of macrophages in the downhill running mice were significantly higher than those in the rest mice. However, MCP-1 and F4/80 mRNA expression levels were significantly attenuated by curcumin administration in downhill running mice. Curcumin may attenuate oxidative stress following downhill running-induced muscle damage.  相似文献   

19.
Isoniazid (INH) is one of the most commonly used antituberculosis drugs, but its clinical applications have been limited by severe hepatic toxicity. Quercetin (Que), a natural flavonoid, has been proved to have many medicinal properties. This study aimed to clarify the possible protective effects of Que against INH‐induced hepatotoxicity using HepG2 cells. Our results indicated that Que significantly increased cell viability, superoxide dismutase, and GSH levels, while decreased alanine aminotransferase/aspartate aminotransferase levels. Besides, Que significantly abrogated INH‐induced cell apoptosis by upregulating the expression levels of Bcl‐2 and decreasing the levels of Bax, cleaved caspase‐3, and cleaved caspase‐9. Furthermore, Que obviously reversed the inhibition of INH on Sirtuin 1 (SIRT1) expression and extracellular signal‐regulated kinase (ERK) phosphorylation. Next, the SIRT1 inhibitor EX527 blocked the enhancement of Que upon ERK phosphorylation. Notably, EX527 partially abolished the beneficial effects of Que. In brief, our results provided the first evidence that Que protected against INH‐induced HepG2 cells by regulating the SIRT1/ERK pathway.  相似文献   

20.
Astaxanthin (AXN) is known to have health benefits by epidemiological studies. Therefore, it is of interest to assess the effect of AXN (derived from indigenous unicellular green alga Haematococcus lacustris) to modulate cell cycle arrest, lysosomal acidification and eventually apoptosis using in vitro in A549 lung cancer cells. Natural extracts of astaxanthin were obtained by standardized methods as reported earlier and characterized by standard HPLC and MS. Treatment of A549 cells with AXN (purified fraction) showed significant reduction in cell viability (about 50%) as compared to crude extract at 50µM concentration. Thus, we show the anticancer effects and lysosomal acidification in A549 cells by Astaxanthin from Haematococcus lacustris for further consideration. Together, our results demonstrated the anticancer potential of AXN from Haematococcus lacustris, which is found to be mediated via its ability to induce cell cycle arrest, lysosomal acidification and apoptotic induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号