首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the effect of isocaloric intake from a high‐fat diet (HFD) on insulin resistance and inflammation in rats. Male Wistar rats were fed on an HFD (n = 12) or control diet (n = 12) for 12 weeks. Subsequently, all animals were euthanized, and blood glucose, insulin, free fatty acids, C‐reactive protein, lipid profile, cytokines and hepatic‐enzyme activity were determined. Carcass chemical composition was also analyzed. During the first and the twelfth weeks of the experimental protocol, the oral glucose tolerance test and insulin tolerance test were performed and demonstrated insulin resistance (P < 0.05) in the HFD group. Although food intake (g) was lower (P < 0.05) in the HFD group compared with the control group, the concentration of total cholesterol, low‐density lipoprotein, C‐reactive protein and liver weight were all significantly higher. The kinase inhibitor of κB, c‐Jun N‐terminal kinase and protein kinase B expressions were determined in the liver and skeletal muscle. After an insulin stimulus, the HFD group demonstrated decreased (P = 0.05) hepatic protein kinase B expression, whereas the kinase inhibitor of κB phospho/total ratio was elevated in the HFD muscle (P = 0.02). In conclusion, the isocaloric intake from the HFD induced insulin resistance, associated with impaired insulin signalling in the liver and an inflammatory response in the muscle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Mesenteric adipose tissue (MAT) inflammation is associated with non‐alcoholic fatty liver disease (NAFLD), and immune cells play pivotal roles in the inflammation of adipose tissue. Here, we investigated the roles of MAT B lymphocytes in NAFLD. Mice fed with high‐fat diet (HFD) and normal diet (ND) were killed in time gradients (4, 8 and 12 weeks). Compared with ND‐fed mice, intra‐hepatic CD45+CD19+ B lymphocytes increased after 4 weeks (P < 0.01) of HFD feeding, and lasted until the 12th week, infiltrated earlier than CD45+CD3+ T lymphocytes and CD45+F4/80+ macrophages. The mRNA expression of tumour necrosis factor (TNF)‐α, interleukin (IL)‐6 and monocyte chemotactic protein (MCP)‐1 decreased in MAT of Bnull HFD‐fed mice compared to that in wild‐type HFD‐fed mice, along with lesser macrophages. Mesenteric adipose tissue B cells from HFD‐fed mice promoted macrophage differentiation to type‐Ι macrophages and expression of pro‐inflammatory cytokines in vitro. Macrophages pre‐treated with MAT B cells from HFD‐fed mice showed elevated mRNA expression of IL‐6 and TNF‐α and declined IL‐10 levels in adipocytes compared to ND MAT B cell pre‐treated macrophages. Besides, internal near‐infrared scanning and external transwell assay showed that HFD MAT B cells migrated to the liver more than ND MAT B cells. High‐fat diet MAT B cells induced higher MCP‐1 and lower IL‐10 expression in primary hepatocytes compared to ND MAT B cells in co‐culture experiment. These data indicate that B lymphocytes infiltrate early in MAT during the development of NAFLD, which may not only promote MAT inflammation by regulating macrophages but also migrate to the liver and induce hepatocytes inflammation.  相似文献   

3.
In this study, the effects of capsaicin on expression of skeletal muscle proteins in Sprague–Dawley rats fed with a high‐fat diet (HFD) were investigated. Rats were fed a HFD with or without capsaicin treatment for 8 wk. After HFD feeding, capsaicin‐treated rats weighed an average of 8% less than those of the HFD control group. Gastrocnemius muscle tissue from lean and obese rats with or without capsaicin treatment was arrayed using 2‐DE for detection of HFD‐associated markers. Proteomic analysis using 2‐DE demonstrated that 36 spots from a total of approximately 600 matched spots showed significantly different expression; 27 spots were identified as gastrocnemius muscle proteins that had been altered in response to capsaicin feeding, and 6 spots could not be identified by mass fingerprinting. Expression of various muscle proteins was determined by immunoblot analysis for the determination of molecular mechanisms, whereby capsaicin caused inhibition of adipogenesis. Immunoblot analysis revealed increased uncoupling protein 3 (UCP3) protein expression in HFD‐fed rats, whereas contents were reduced with capsaicin treatment. Compared with the HFD control group, capsaicin treatment increased phosphorylation of AMP‐activated protein kinase (AMPIC) CP3 and acetyl‐CoA carboxylase (ACC). To support this result, we also analyzed in vitro differential protein expression in L6 skeletal muscle cells. These data suggest that the AMPK‐ACC‐malonyl‐CoA metabolic signaling pathway is one of the targets of capsaicin action. To the best of our knowledge, this is the first proteomic study to report on analysis of diet‐induced alterations of protein expression that are essential for energy expenditure in rat muscle.  相似文献   

4.
Obesity is a major and independent risk factor of kidney diseases. The pathogenic mechanisms of obesity‐associated renal injury are recognized to at least involve a lipid‐rich and pro‐inflammatory state of the renal tissues, but specific mechanisms establishing causal relation remain unknown. Saturated fatty acids are elevated in obesity, and known to induce chronic inflammation in kidneys. Myeloid differentiation protein 2 (MD2) is an important protein in lipopolysaccharide‐induced innate immunity response and inflammation. We suggested that obesity‐associated renal injury is regulated by MD2 thereby driving an inflammatory renal injury. The used three mouse models for in vivo study: MD2 knockout mice (KO) maintained on high fat diet (HFD), wild‐type mice on HFD plus L6H21, a specific MD2 inhibitor and KO mice given palmitic acid (PA) by IV injection. The in vitro studies were carried out in cultured renal tubular epithelial cells, mouse mesangial cells and primary macrophages, respectively. The HFD mice presented with increased hyperlipidemia, serum creatinine and proteinuria. Renal tissue from HFD mice had increased fibrosis, inflammatory cytokines, macrophage infiltration, and activation of NF‐κB and MAPKs. This HFD‐induced renal injury profile was not observed in KO mice or L6H21‐treated mice. Mice given PA mimmicked the HFD‐induced renal injury profiles, which were prevented by MD2 knockout. The in vitro data further confirmed MD2 mediates PA‐induced inflammation. MD2 is causally related with obesity‐associated renal inflammatory injury. We believe that MD2 is an attractive target for future therapeutic strategies in obesity‐associated kidney diseases.  相似文献   

5.
The aim was to examine the role of cyclooxygenase (COX)‐2‐mediated inflammation in the development of obese linked insulin resistance and fatty liver. The rats were fed separately regular diet (CONT), high‐fat diet (HFD) ad libitum, or energy restrictedly for 12 weeks. Rats fed HFD ad libitum were further divided into three subgroups co‐treated with vehicle (HFa), or a selective COX‐2 inhibitor celecoxib (HFa‐Cel) or mesulid (HFa‐Mes). Euglycemic hyperinsulinemic clamp (EHC) experiment was performed at the end of study. Another set of rats with similar grouping was further divided into those with a 4, 8, or 12‐week intervention period for hepatic sampling. Body weight was increased significantly and similarly in HFa, HFa‐Cel, and HFa‐Mes. Time‐dependent increases in plasma insulin, glucose, 8‐isoprostanes, leptin levels, homeostasis model assessment of insulin resistance (HOMA‐IR) and hepatic triglyceride contents shown in HFa were significantly reversed in HFa‐Cel and HFa‐Mes. During EHC period, the reduction in stimulation of whole body glucose uptake, suppression of hepatic glucose production and metabolic clearance rate of insulin shown in HFa were significantly reversed in HFa‐Cel and HFa‐Mes. The enhanced COX‐2 and tumor necrosis factor‐α (TNF‐α) but attenuated PPAR‐γ and C/EBP‐α mRNA expressions in epididymal fat shown in HFa were significantly reversed in HFa‐Cel and HFa‐Mes. The increases in average cell size of adipocytes and CD68 positive cells shown in HFa were also significantly reversed in HFa‐Cel and HFa‐Mes. Our findings suggest that COX‐2 activation in fat inflammation is important in the development of insulin resistance and fatty liver in high fat induced obese rats.  相似文献   

6.
Dysregulated synthesis of hepatic cholesterol is a critical determinant of atherosclerosis. The combination of cholesterol and cholic acid (CC) diet supplementation to animal models is associated with hepatic dysfunction‐mediated atherosclerosis. The current study was designed to investigate the hepatic cholesterol–lowering effects of oligomeric proanthocyanidins (OPC) in CC diet fed rats. CC diet–induced group exhibited significant increase in the hepatic lipid profile, activities of 3‐hydroxy‐3‐methylglutaryl coenzyme A (HMG‐CoA) reductase (HMGR), PON‐1, LCAT, LPL, and LPO levels, and messenger RNA expression of HMGR, low‐density lipoprotein receptor (LDLr), and HNF‐4α. Administration of OPC (100 mg/kg/bwt) resulted in the significant reduction of lipid profile and HMGR levels, with concomitant increase in the levels of cholesterol‐regulating enzymes and upregulated expression of LDLr and HNF‐4α, which was similar to atorvastatin. Molecular docking studies also revealed that proanthocyanidins had a strong binding affinity to HMGR, similar to atorvastatin. Our findings suggest that OPC regulate the impaired cholesterol metabolism–associated atherosclerosis through hepatic cholesterol–lowering effect.  相似文献   

7.
Recent research suggested that taking a high‐fat diet (HFD) may lead to a gut microbiota imbalance and colon tissue damage. This would lead to increased intestinal permeability and consequent constant circulation of low‐grade inflammatory cytokines. Spirulina platensis can protect against HFD‐induced metabolic inflammation and can stimulate the growth of beneficial bacteria in in vitro stool cultures. However, it is unknown whether this beneficial effect acts on intestinal tissues. In this study, rats were fed a high‐fat diet fed with 3% S platensis for 14 weeks. We analysed endotoxin, the composition of the microbiota, inflammation and gut permeability. We found that S platensis decreased the bodyweight and visceral fat pads weight of the HFD‐fed rats. In addition, it lowered the levels of lipopolysaccharide and pro‐inflammatory cytokines in serum. Our results showed that S platensis could largely reduce the relative amount of Proteobacteria and the Firmicutes/Bacteroidetes ratio in faecal samples from HFD‐fed rats. S platensis significantly reduced intestinal inflammation, as shown by decreased expression of myeloid differentiation factor 88 (MyD88), toll‐like receptor 4 (TLR4), NF‐κB (p65) and inflammatory cytokines. S platensis also ameliorated the increased permeability and decreased expression of tight junction proteins in the intestinal mucosa, such as ZO‐1, Occludin and Claudin‐1. Therefore, in HFD‐induced gut dysbiosis rats, S platensis benefits health by inhibiting chronic inflammation and gut dysbiosis, and modulating gut permeability.  相似文献   

8.
A Vigna nakashimae (VN) extract has been shown to have antidiabetic and anti-obesity effects. However, the mechanism underlying the effect of a VN extract on hepatic inflammation and endoplasmic reticulum (ER) stress remains unclear. In the present study, we investigated how a VN extract protects against the development of non-alcoholic fatty liver disease (NAFLD). A VN extract for 12 weeks reduced the body weight, serum metabolic parameters, cytokines, and hepatic steatosis in high-fat diet (HFD)-fed mice. A VN extract decreased HFD-induced hepatic acetyl CoA carboxylase and glucose transporter 4 expressions. In addition to the levels of high-mobility group box 1 and receptor for advanced glycation, the hepatic expression of ATF4 and caspase-3 was also reduced by a VN extract. Thus, these data indicate that a chronic VN extract prevented NAFLD through multiple mechanisms, including inflammation, ER stress, and apoptosis in the liver.  相似文献   

9.
目的探讨奥美沙坦对于高脂诱导的非酒精性脂肪肝病(NAFLD)的影响及可能机制。方法健康雄性8周龄C57BL/6小鼠24只随机分为高脂组(n=16)和正常饮食组(n=8),高脂组小鼠高脂饮食(60%的脂肪)12w后再随机分为高脂饮食对照组(n=8)、高脂饮食治疗组(n=8)。高脂饮食治疗组小鼠给予0.75mg/kg/d的奥美沙坦灌胃8w,灌胃结束后处理小鼠,留取空腹血样本检测AST和ALT。肝组织冰冻切片行油红O染色观察脂肪变;石蜡切片行HE和F4/80免疫组化染色观察肝脏炎症变化;实时荧光定量PCR检测肝脏TNF-α和IL-6mRNA的表达水平;WesternBlot检测肝组织中IκB-α、p-IκBa、NF—κB信号通路的活化。结果奥美沙坦显著抑制了高脂诱导的NAFLD脂肪变性,并明显改善肝功能。实时荧光定量PCR结果表明奥美沙坦能显著降低肝脏组织中TNF-α和IL-6mRNA表达水平(P〈0.05);Western Blot结果显示奥美沙坦显著抑制肝脏NF-κB信号通路活化。结论奥美沙坦显著抑制NAFLD小鼠肝脏炎性病变而保护肝功能,其机制与抑制NF-κB信号通路活化以及降低肝脏TNF-α和IL-6mRNA水平有关。  相似文献   

10.
This research aim was to assess the impact of the seed extracts of the date cultivars (Qatara, Barhi, and Ruthana) on rat’s liver steatosis, oxidative stress, and inflammation triggered by feeding a high-fat diet (HFD). The experimental design was based on random partitioning into two groups; one that received the standard diet and another that received the HFD diet. The HFD rats were orally administered Lipitor or date seed extracts at 300 or 600 mg/kg/day for 4 weeks. Accordingly, feeding rats HFD significantly increased body and liver weights, hepatic and serum lipid levels, glucose, insulin, HOMA-IR, liver function enzymes, and inflammation markers, and decreased oxidative stress enzymes. Oral administration of Barhi and Ruthana date seed extracts significantly decreased body and liver weights. Serum and liver total cholesterol TC, Triglycerides TGs, and free fatty acids FFAs were also decreased as were AST, ALT, MAD, leptin, and CRP, with a concomitant increase in SOD, GSH, and CAT. Furthermore, similar to Lipitor, oral administration of the extracts reduced inflammation markers such as TNF-α, serum CRP, IL-6, IL-1β, and leptin while increasing IL-10 and adiponectin levels. Histological observation revealed that extract administration improved hepatocyte and parenchymal structures and decreased lipid deposition. In conclusion, both Barhi and Ruthana seed extracts showed strong hepatoprotective, anti-inflammatory, and antioxidant effects against HFD-induced liver steatosis. And date seeds have other beneficial potential for prevention and treatment of various diseases, which can be studied in the future.  相似文献   

11.
High-fat diet (HFD)-fed mice show obesity with development of liver steatosis and a proinflammatory state without establishing an inflammatory reaction. The aim of this work was to assess the hypothesis that eicosapentaenoic acid (EPA) plus hydroxytyrosol (HT) supplementation prevents the inflammatory reaction through enhancement in the hepatic resolvin content in HFD-fed mice. Male C57BL/6J mice were fed an HFD or a control diet and supplemented with EPA (50 mg/kg/day) and HT (5 mg/kg/day) or their respective vehicles for 12 weeks. Measurements include liver levels of EPA, DHA and palmitate (gas chromatography), liver resolvins and triglyceride (TG) and serum aspartate transaminase (AST) (specific kits) and hepatic and serum inflammatory markers (quantitative polymerase chain reaction and enzyme-linked immunosorbent assay). Compared to CD, HFD induced body weight gain, liver steatosis and TG accumulation, with up-regulation of proinflammatory markers in the absence of histological inflammation or serum AST changes; these results were accompanied by higher hepatic levels of resolvins RvE1, RvE2, RvD1 and RvD2, with decreases in EPA and DHA contents. EPA+HT supplementation in HFD feeding synergistically reduced the steatosis score over individual treatments and increased the hepatic levels of EPA, DHA and resolvins, with attenuation of proinflammatory markers. Lack of progression of HFD-induced proinflammatory state into overt inflammation is associated with resolvin up-regulation, which is further increased by EPA+HT supplementation eliciting steatosis attenuation. These findings point to the importance of combined protocols in hepatoprotection due to the involvement of cross-talk mechanisms, which increase effectiveness and diminish dosages, avoiding undesirable effects.  相似文献   

12.
Specific activities of the hepatic microsomal enzymes 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase and cholesterol 7alpha-hydroxylase were studied in rats fed sterols and bile acids. The administration of bile acids (taurocholate, taurodeoxycholate, taurochenodeoxycholate) at a level of 1% of the diet for 1 wk reduced the activity of HMG CoA reductase. Taurocholate and taurodeoxycholate, but not taurochenodeoxycholate, inhibited cholesterol 7alpha-hydroxylase. Dietary sitosterol produced increases in the specific activity of HMG CoA reductase (3.6-fold) and cholesterol 7alpha-hydroxylase (1.4-fold), and biliary cholesterol concentrations in this group more than doubled. Compared with controls fed the stock diet, the simultaneous administration of sitosterol and taurochenodeoxycholate resulted in a 60% decrease of HMG CoA reductase activity and no change in cholesterol 7alpha-hydroxylase activity or biliary cholesterol concentration. Rats fed sitosterol plus taurocholate had nearly normal HMG CoA reductase activity, but cholesterol 7alpha-hydroxylase was inhibited and biliary cholesterol remained high. Bile acid secretion rates and biliary bile acid composition were similar in controls and sterol-fed animals. In all groups receiving bile acids, biliary secretion of bile acids was nearly doubled and bile acid composition was shifted in the direction of the administered bile acid. It is concluded that the composition of the bile acid pool influences the hepatic concentrations of the rate-controlling enzymes of bile acid synthesis.  相似文献   

13.
Non‐alcoholic fatty liver disease (NAFLD) can progress to the more serious non‐alcoholic steatohepatitis (NASH), characterized by inflammatory injury and fibrosis. The pathogenic basis of NAFLD progressing to NASH is currently unknown, but growing evidence suggests MD2 (myeloid differentiation factor 2), an accessory protein of TLR4, is an important signalling component contributing to this disease. We evaluated the effectiveness of the specific MD2 inhibitor, L6H21, in reducing inflammatory liver injury in a relevant high‐fat diet (HFD) mouse model of NASH and in the palmitic acid (PA)‐stimulated human liver cell line (HepG2). For study, genetic knockout (MD2?/?) mice were fed a HFD or control diet for 24 weeks, or wild‐type mice placed on a similar diet regimen and treated with L6H21 for the last 8 or 16 weeks. Results indicated that MD2 inhibition with L6H21 was as effective as MD2 knockout in preventing the HFD‐induced hepatic lipid accumulation, pro‐fibrotic changes and expression of pro‐inflammatory molecules. Direct challenge of HepG2 with PA (200 μM) increased MD2‐TLR4 complex formation and expression of pro‐inflammatory and pro‐fibrotic genes and L6H21 pre‐treatment prevented these PA‐induced responses. Interestingly, MD2 knockout or L6H21 increased expression of the anti‐inflammatory molecule, PPARγ, in liver tissue and the liver cell line. Our results provide further evidence for the critical role of MD2 in the development of NASH and conclude that MD2 could be a potential therapeutic target for NAFLD/NASH treatment. Moreover, the small molecule MD2 inhibitor, L6H21, was an effective and selective investigative agent for future mechanistic studies of MD2.  相似文献   

14.
Mitochondrial dysfunction plays an important role in obesity‐induced cardiac impairment. SIRT3 is a mitochondrial protein associated with increased human life span and metabolism. This study investigated the functional role of SIRT3 in obesity‐induced cardiac dysfunction. Wild‐type (WT) and SIRT3 knockout (KO) mice were fed a normal diet (ND) or high‐fat diet (HFD) for 16 weeks. Body weight, fasting glucose levels, reactive oxygen species (ROS) levels, myocardial capillary density, cardiac function and expression of hypoxia‐inducible factor (HIF)‐1α/‐2α were assessed. HFD resulted in a significant reduction in SIRT3 expression in the heart. Both HFD and SIRT3 KO mice showed increased ROS formation, impaired HIF signalling and reduced capillary density in the heart. HFD induced cardiac hypertrophy and impaired cardiac function. SIRT3 KO mice fed HFD showed greater ROS production and a further reduction in cardiac function compared to SIRT3 KO mice on ND. Thus, the adverse effects of HFD on cardiac function were not attributable to SIRT3 loss alone. However, HFD did not further reduce capillary density in SIRT3 KO hearts, implicating SIRT3 loss in HFD‐induced capillary rarefaction. Our study demonstrates the importance of SIRT3 in preserving heart function and capillary density in the setting of obesity. Thus, SIRT3 may be a potential therapeutic target for obesity‐induced heart failure.  相似文献   

15.
16.
This study evaluates the protective effects of 7‐hydroxycoumarin (7‐HC) on dyslipidemia and cardiac hypertrophy in isoproterenol (ISO) induced myocardial infarction (MI) in rats. Rats were pre‐ and co treated with 7‐HC (16 mg/kg) daily for 8 days. ISO (100 mg/kg) was subcutaneously injected into rats on seventh and eighth days to induce MI. Increased activity/levels of serum creatine kinase‐MB (CK‐MB), troponin‐T, plasma lipid peroxidation products, and altered levels of lipids in the serum and heart and serum lipoproteins were noted in ISO‐induced rats. ISO‐induced myocardial infarcted rats revealed increased hypertrophy (cardiac and left ventricular) and hepatic 3‐hydroxyl 3‐methylglutaryl‐coenzyme‐A reductase (HMG‐CoA reductase) activity. Pre and cotreatment with 7‐HC revealed significant protective effects on all the biochemical parameters evaluated. The in vitro study demonstrated its free radical scavenging property. Thus, 7‐HC protects ISO‐induced MI in rats by its free radical scavenging and antihyperlipidaemic and antihypertrophic properties.  相似文献   

17.
Kim SO  Yun SJ  Jung B  Lee EH  Hahm DH  Shim I  Lee HJ 《Life sciences》2004,75(11):1391-1404
To find out whether the expressions of these adipocyte markers are influenced by oriental medicine, obesity rats induced by high fat diet (HFD) for 8 weeks were injected with 50 mg/100 g body weight adlay seed crude extract (ACE), daily for 4 weeks. The results are summarized as follows: HFD + ACE group significantly reduced food intakes and body weights. Weights of epididymal and peritoneal fat were dramatically increased in HFD groups compared with those of normal diet (ND) group but significantly decreased more in HFD + ACE group than those of HFD + saline group (sham). Those of brown adipocytes were increased in HFD + ACE group compared to ND and sham groups but there was no significant difference. The sizes in white adipose tissue (WAT) by microscope were markedly larger in HFD groups than ND group but considerably reduced in HFD + ACE group compared with sham group. The levels of triglyceride, total-cholesterol and leptin in blood serum were significantly decreased in HFD + ACE group compared to those of sham group. Leptin and TNF-alpha mRNA expressions in WAT of rats were remarkably increased more in sham group than in those of ND group. Those of HFD + ACE group were significantly decreased compared with those of sham group, especially. TNF-alpha mRNA expression in HFD + ACE group was declined more than that of ND group. In conclusion, treatments of ACE modulated expressions of leptin and TNF-alpha and reduced body weights, food intake, fat size, adipose tissue mass and serum hyperlipidemia in obesity rat fed HFD. Accordingly, the oriental medicine extract, adlay seed crude extract, can be considered for obesity therapies controlling.  相似文献   

18.
CTRP9 has been reported to regulate lipid metabolism and exert cardioprotective effects, yet its role in high‐fat diet (HFD)‐induced cardiac lipotoxicity and the underlying mechanisms remain unclear. In the current study, we established HFD‐induced obesity model in wild‐type (WT) or CTRP9 knockout (CTRP9‐KO) mice and palmitate‐induced lipotoxicity model in neonatal rat cardiac myocytes (NRCMs) to investigate the effects of CTRP9 on cardiac lipotoxicity. Our results demonstrated that the HFD‐fed CTRP9‐KO mice accentuated cardiac hypertrophy, fibrosis, endoplasmic reticulum (ER) stress‐initiated apoptosis and oxidative stress compared with the HFD‐fed WT mice. In vitro, CTRP9 treatment markedly alleviated palmitate‐induced oxidative stress and ER stress‐induced apoptosis in NRCMs in a dose‐dependent manner. Phosphorylated AMPK at Thr172 was reduced, and phosphorylated mammalian target of rapamycin (mTOR) was strengthened in the heart of the HFD‐fed CTRP9‐KO mice compared with the HFD‐fed control mice. In vitro, AMPK inhibitor compound C significantly abolished the effects of CTRP9 on the inhibition of the apoptotic pathway in palmitate‐treated NRCMs. In a further mechanistic study, CTRP9 enhanced expression of phosphorylated LKB1 at Ser428 and promoted LKB1 cytoplasmic localization. Besides, silencing of LKB1 gene by lentivirus significantly prohibited activation of AMPK by CTRP9 and partially eliminated the protective effect of CTRP9 on the cardiac lipotoxicity. These results indicate that CTRP9 exerted anti‐myocardial lipotoxicity properties and inhibited cardiac hypertrophy probably through the LKB1/AMPK signalling pathway.  相似文献   

19.
In heart failure, high‐fat diet (HFD) may exert beneficial effects on cardiac mitochondria and contractility. Skeletal muscle mitochondrial dysfunction in heart failure is associated with myopathy. However, it is not clear if HFD affects skeletal muscle mitochondria in heart failure as well. To induce heart failure, we used pressure overload (PO) in rats fed normal chow or HFD. Interfibrillar mitochondria (IFM) and subsarcolemmal mitochondria (SSM) from gastrocnemius were isolated and functionally characterized. With PO heart failure, maximal respiratory capacity was impaired in IFM but increased in SSM of gastrocnemius. Unexpectedly, HFD affected mitochondria comparably to PO. In combination, PO and HFD showed additive effects on mitochondrial subpopulations which were reflected by isolated complex activities. While PO impaired diastolic as well as systolic cardiac function and increased glucose tolerance, HFD did not affect cardiac function but decreased glucose tolerance. We conclude that HFD and PO heart failure have comparable effects leading to more severe impairment of IFM. Glucose tolerance seems not causally related to skeletal muscle mitochondrial dysfunction. The additive effects of HFD and PO may suggest accelerated skeletal muscle mitochondrial dysfunction when heart failure is accompanied with a diet containing high fat.  相似文献   

20.
Recent studies reported that 3‐hydroxy‐3‐methyl‐glutaryl coenzyme A (HMG‐CoA) reductase inhibitors have pleotropic effects independent of their lipid‐lowering properties. The present study was undertaken to determine whether treatment with rosuvastatin (RO) would be beneficial in a rat model of bile duct ligation (BDL). Animals were divided into three groups: a sham group (group I), a BDL group treated with vehicle (group II), and a BDL group treated with RO (10 mg/kg) (group III). Serum levels of total bilirubin, γ‐glutamyl transpeptidase, alanine aminotransferase, and aspartate aminotransferase decreased significantly in group III when compared to group II. Lipid peroxides and NO levels of group III were found to be significantly lower than those of group II. Antioxidant enzymes (superoxide dismutase, glutathione‐S‐transferase, and catalase) activity in liver tissues markedly decreased in group II, whereas treatment with RO preserved antioxidant enzyme activity. DT‐diaphorase activity in group II was significantly higher than that in group III. The histopathological results showed multiple numbers of newly formed bile ductules with inflammatory cells infiltration in group II. These pathological changes were improved in group III. Our data indicate that RO ameliorates hepatic injury, inflammation, lipid peroxidation and increases antioxidant enzymes activity in rats subjected to BDL. RO may have a beneficial effect on treatment of cholestatic liver diseases. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:89–94, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20315  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号