首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
MicroRNAs (miRNAs) have been suggested as pivotal regulators in the pathological process of cerebral ischemia and reperfusion injury. In this study, we aimed to investigate the role of miR‐135a in regulating neuronal survival in cerebral ischemia and reperfusion injury using an in vitro cellular model induced by oxygen‐glucose deprivation and reoxygenation (OGD/R). Our results showed that miR‐135a expression was significantly decreased in neurons with OGD/R treatment. Overexpression of miR‐135a significantly alleviated OGD/R‐induced cell injury and oxidative stress, whereas inhibition of miR‐135a showed the opposite effects. Glycogen synthase kinase‐3β (GSK‐3β) was identified as a potential target gene of miR‐135a. miR‐135a was found to inhibit GSK‐3β expression, but promote the expression of nuclear factor erythroid 2‐related factor 2 (Nrf2) and downstream signaling. However, overexpression of GSK‐3β significantly reversed miR‐135a‐induced neuroprotective effect. Overall, our results suggest that miR‐135a protects neurons against OGD/R‐induced injury through downregulation of GSK‐3β and upregulation of Nrf2 signaling.  相似文献   

6.
7.
8.
9.
This work describes an investigation of pathways and binging pockets (BPs) for dioxygen (O2) through the cofactorless oxygenase 3‐hydroxy‐2‐methylquinolin‐4‐one 2,4‐dioxygenase in complex with its natural substrate, 3‐hydroxy‐2‐methylquinolin‐4(1H)‐one, in aqueous solution. The investigation tool was random‐acceleration molecular dynamics (RAMD), whereby a tiny, randomly oriented external force is applied to O2 in order to accelerate its movements. In doing that, care was taken that the external force only continues, if O2 moves along a direction for a given period of time, otherwise the force changed direction randomly. Gates for expulsion of O2 from the protein, which can also be taken as gates for O2 uptake, were found throughout almost the whole external surface of the protein, alongside a variety of BPs for O2. The most exploited gates and BPs were not found to correspond to the single gate and BP proposed previously from the examination of the static model from X‐ray diffraction analysis of this system. Therefore, experimental investigations of this system that go beyond the static model are urgently needed.  相似文献   

10.
Indoleamine 2,3‐dioxygenase (IDO) is the rate‐limiting enzyme in the kynurenine (Kyn) pathway of tryptophan (Trp) metabolism. IDO is immunosuppressive and is induced by inflammation in macrophages and dendritic cells (DCs). Previous studies have shown the serum Kyn/Trp levels in patients with hemolytic anemia to be notably high. In the present study, we demonstrated that hemoglobin (Hb), but not hemin or heme‐free globin (Apo Hb), induced IDO expression in bone marrow‐derived myeloid DCs (BMDCs). Hb induced the phosphorylation and degradation of IκBα. Hb‐induced IDO expression was inhibited by inhibitors of PI3‐kinase (PI3K), PKC and nuclear factor (NF)‐κB. Hb translocated both RelA and p52 from the cytosol to the nucleus and induced the intracellular generation of reactive oxygen species (ROS). Hb‐induced IDO expression was inhibited by anti‐oxidant N‐acetyl‐L ‐cysteine (NAC) or mixtures of SOD and catalase, however, IDO expression was enhanced by 3‐amino‐1,2,4‐triazole, an inhibitor of catalase, suggesting that the generation of ROS such as O, H2O2, and hydroxyl radical is required for the induction of IDO expression. The generation of ROS was inhibited by a PKC inhibitor, and this action was further enhanced by addition of a PI3K inhibitor. Hb induced Akt phosphorylation, which was inhibited by a PI3K inhibitor and enhanced by a PKC inhibitor. These results suggest that the activation of NF‐κB through the PI3K‐PKC‐ROS and PI3K‐Akt pathways is required for the Hb‐induced IDO expression in BMDCs. J. Cell. Biochem. 108: 716–725, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
This work shows that a deep‐sea protein, 3LEZ, with known in vitro β‐lactamase activity, proved stable, substantially in the conformation detected by X‐ray diffraction of the crystal, when subjected to molecular‐dynamics (MD) simulations under conditions compatible with shallow seas. Docking simulations showed that the β‐lactamase active site S85 of 3LEZ (S70 in Ambler numbering) is the preferential binding pocket for not only β‐lactam antibiotics and inhibitors, but, surprisingly, also for a wide variety of other biologically active compounds in various chemical classes, including marine metabolites. In line with the in vitro β‐lactamase activity, a) affinities on docking β‐lactam antibiotics and inhibitors onto 3LEZ were found to roughly parallel published Km and Ki values, obtained from Michaelis? Menten kinetics under room conditions, and b) DFT calculations agreed with experiments that the irreversible reaction of the β‐lactamase inhibitor clavulanic acid with the whole S85 catalytic center of 3LEZ is spontaneous. These observations must be viewed in the light that a) the compounds in other chemical classes showed comparable affinities, and, in some cases, even higher than β‐lactams, for the S85 active site, b) Km and Ki data are not available at the high hydrostatic pressure of the deep sea, where 3LEZ is believed to have evolved, c) an inverse order of affinities for the β‐lactams, with respect to both experimentation and simulations at room conditions, was observed from comparative docking simulations with 3LEZ derived from MD under high hydrostatic pressure. Although MD requires a general assessment for high hydrostatic pressure before c) above is given the same weight as all other observations, this work questions the conclusion that the in vitro determined β‐lactamase activity represents the ecological role of 3LEZ.  相似文献   

12.
13.
The plasma membrane in eukaryotic cells contains microdomains that are enriched in certain glycosphingolipids, gangliosides, and sterols (such as cholesterol) to form membrane/lipid rafts (MLR). These regions exist as caveolae, morphologically observable flask-like invaginations, or as a less easily detectable planar form. MLR are scaffolds for many molecular entities, including signaling receptors and ion channels that communicate extracellular stimuli to the intracellular milieu. Much evidence indicates that this organization and/or the clustering of MLR into more active signaling platforms depends upon interactions with and dynamic rearrangement of the cytoskeleton. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to MLR and help regulate lateral diffusion of membrane proteins and lipids in response to extracellular events (e.g., receptor activation, shear stress, electrical conductance, and nutrient demand). MLR regulate cellular polarity, adherence to the extracellular matrix, signaling events (including ones that affect growth and migration), and are sites of cellular entry of certain pathogens, toxins and nanoparticles. The dynamic interaction between MLR and the underlying cytoskeleton thus regulates many facets of the function of eukaryotic cells and their adaptation to changing environments. Here, we review general features of MLR and caveolae and their role in several aspects of cellular function, including polarity of endothelial and epithelial cells, cell migration, mechanotransduction, lymphocyte activation, neuronal growth and signaling, and a variety of disease settings. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号