首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural cytotoxicity receptors (NCRs) are major activating receptors involved in NK cytotoxicity. NCR expression varies with the activation state of NK cells, and the expression level correlates with NK cells’ natural cytotoxicity. In this study, we found that Gö6983, a PKC inhibitor, induced a remarkable increase of NCR expression on primary NK cells, but other PKC inhibitors and NK cell stimulators such as IL-2 and PMA, did not. Gö6983 increased the expression of NCR in a time- and concentration-dependent manner. Furthermore, Gö6983 strongly upregulated the surface expression of death ligands FasL and TRAIL, but not cytotoxic molecules perforin and granzyme B. Unlike two other NK stimulating molecules, IL-2, and PMA, Gö6983 did not induce NK cell proliferation. Up-regulation of NCRs and death ligands on NK cells by Gö6983 resulted in a significant enhancement of NK cytotoxicity against various cancer cell lines. Most importantly, administration of Gö6983 effectively inhibited pulmonary tumor metastasis in mice in a dose-dependent manner. These results suggest that Gö6983 functions as an NK cell activating molecule (NKAM); this NKAM is a novel anti-cancer and anti-metastasis drug candidate because it enhances NK cytotoxicity against cancer cells in vivo as well as in vitro.  相似文献   

2.
3.
Li Z  Xiao J  Wu X  Li W  Yang Z  Xie J  Xu L  Cai X  Lin Z  Guo W  Luo J  Liu M 《Current molecular medicine》2012,12(8):967-981
Bone metastasis is a common and serious consequence of breast cancer. Bidirectional interaction between tumor cells and the bone marrow microenvironment drives a so-called 'vicious cycle' that promotes tumor cell malignancy and stimulates osteolysis. Targeting these interactions and pathways in the tumor-bone microenvironment has been an encouraging strategy for bone metastasis therapy. In the present study, we examined the effects of plumbagin on breast cancer bone metastasis. Our data indicated that plumbagin inhibited cancer cell migration and invasion, suppressed the expression of osteoclast-activating factors, altered the cancer cell induced RANKL/OPG ratio in osteoblasts, and blocked both cancer cell- and RANKL-stimulated osteoclastogenesis. In mouse model of bone metastasis, we further demonstrated that plumbagin significantly repressed breast cancer cell metastasis and osteolysis, inhibited cancer cell induced-osteoclastogenesis and the secretion of osteoclast-activating factors in vivo. At the molecular level, we found that plumbagin abrogated RANKL-induced NF-κB and MAPK pathways by blocking RANK association with TRAF6 in osteoclastogenesis, and by inhibiting the expression of osteoclast-activating factors through the suppression of NF-κB activity in breast cancer cells. Taken together, our data demonstrate that plumbagin inhibits breast tumor bone metastasis and osteolysis by modulating the tumor-bone microenvironment and that plumbagin may serve as a novel agent in the treatment of tumor bone metastasis.  相似文献   

4.
Matrix metalloproteinases (MMPs), in particular MMP‐9, have been shown to be induced by cytokines, including TNF‐α and contributes to airway inflammation. However, the mechanisms underlying TNF‐α‐induced MMP‐9 expression in human A549 cells remain unclear. Here, we report that TNF‐α‐induced MMP‐9 gene expression was mediated through the TNFR1/TRAF2/PKCα‐dependent signaling pathways in A549 cells, determined by zymographic, RT‐PCR, and Western blotting analyses. TNF‐α‐induced MMP‐9 expression was reduced by pretreatment with a TNFR Ab. Furthermore, TNF‐α‐induced TNFR1 and TRAF2 complex formation was revealed by immunoprecipitation using an anti‐TNFR1 Ab followed by Western blot analysis against an anti‐TRAF2 or anti‐TNFR1 Ab. In addition, TNF‐α‐induced MMP‐9 expression was also reduced by pretreatment with the inhibitor of PKCα (Gö6983), c‐Src (PP1), EGFR (AG1478), or PI3K (LY294002) or transfection with siRNAs of PKCα, Src, EGFR, Akt, p65, p300, and c‐Jun. On the other hand, TNF‐α stimulated the phosphorylation of c‐Src, EGFR, Akt, JNK1/2, and c‐Jun, which were inhibited by pretreatment with Gö6983. We also showed that TNF‐α induced Akt translocation and the formation of an Akt/p65/p300 complex. Pretreatment with the inhibitor of JNK1/2 (SP600125) but not the inhibitor of MEK1/2 (U0126), p38 MAPK (SB202190), or PI3K (LY294002), markedly inhibited TNF‐α‐induced c‐Jun mRNA levels. Taken together, these data suggest that in A549 cells, TNF‐α induces MMP‐9 expression via the TNFR1/TRAF2/PKCα‐dependent JNK1/2/c‐Jun and c‐Src/EGFR/PI3K/Akt pathways. J. Cell. Physiol. 454–464, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
The signaling pathways that stimulate glucose uptake in response to muscle contraction are not well defined. Recently, we showed that carbachol, an acetylcholine analog, stimulates contraction of C2C12 myotube cultures and the rapid arrival of myc‐epitope tagged GLUT4 glucose transporters at the cell surface. Here, we explore a role for protein kinase C (PKC) in regulating GLUT4 traffic. Cell surface carbachol‐induced GLUT4myc levels were partly inhibited by the conventional/novel PKC inhibitors GF‐109203X, Gö6983, and Ro‐31‐8425 but not by the conventional PKC inhibitor Gö6976. C2C12 myotubes expressed several novel isoforms of PKC mRNA with PKCδ and PKCε in greater abundance. Carbachol stimulated phosphorylation of PKC isoforms and translocation of PKCδ and PKCε to membranes within 5 min. However, only a peptidic inhibitor of PKCε translocation (myristoylated‐EAVSLKPT), but not one of PKCδ (myristoylated‐SFNSYELGSL), prevented the GLUT4myc response to carbachol. Significant participation of PKCε in the carbachol‐induced gain of GLUT4myc at the surface of C2C12 myotubes was further supported through siRNA‐mediated PKCε protein knockdown. These findings support a role for novel PKC isoforms, especially PKCε, in contraction‐stimulated GLUT4 traffic in muscle cells. J. Cell. Physiol. 226: 173–180, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Tumor necrosis factor‐alpha (TNFα) induces cancer development and metastasis, which is prominently achieved by nuclear factor‐kappa B (NF‐κB) activation. TNFα‐induced NF‐κB activation enhances cellular mechanisms including proliferation, migration, and invasion. KiSS1, a key regulator of puberty, was initially discovered as a tumor metastasis suppressor. The expression of KiSS1 was lost or down‐regulated in different metastatic tumors. However, it is unclear whether KiSS1 regulates TNFα‐induced NF‐κB activation and further tumor cell migration. In this study, we demonstrate that KiSS1 suppresses the migration of breast cancer cells by inhibiting TNFα‐induced NF‐κB pathway and RhoA activation. Both KiSS1 overexpression and KP10 (kisspeptin‐10) stimulation inhibited TNFα‐induced NF‐κB activity, suppressed TNFα‐induced cell migration and cell attachment to fibronectin in breast cancer cells while KP10 has little effect on cancer cell proliferation. Furthermore, KP10 inhibited TNFα‐induced cell migration and RhoA GTPase activation. Therefore, our data demonstrate that KiSS1 inhibits TNFα‐induced NF‐κB activation via downregulation of RhoA activation and suppression of breast cancer cell migration and invasion. J. Cell. Biochem. 107: 1139–1149, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
The phosphorylation of Kvβ2 was investigated by different protein kinases. Protein kinase A catalytic subunit (PKA-CS) yielded the greatest phosphorylation of recombinant Kvβ2 (rKvβ2), with limited phosphorylation by protein kinase C catalytic subunit (PKC-CS) and no detectable phosphorylation by casein kinase II (CKII). Protein kinase(s) from adult rat brain lysate phosphorylated both rKvβ2 and endogenous Kvβ. The PKA inhibitor, PKI 6-22, fully inhibited PKA-mediated phophorylation of rKvβ2 yet showed minimal inhibition of kinase activity present in rat brain. The inhibitor Gö 6983, that blocks PKCα, PKCβ, PKCγ, PKCδ and PKCζ activities, inhibited rKvβ2 phosphorylation by rat brain kinases, with no inhibition by Gö 6976 which blocks PKCα and PKCβΙ activities. Dose-response analysis of Gö 6983 inhibitory activity indicates that at least two PKC isozymes account for the kinase activity present in rat brain. Τhus, while PKA was the most active protein kinase to phosphorylate rKvβ2 in vitro, Kvβ2 phosphorylation in the rat brain is mainly mediated by PKC isozymes.  相似文献   

8.
Prostaglandin E2 (PGE2) is produced in bone mainly by osteoblasts and stimulates bone resorption. Osteolytic bone metastasis of cancers is accompanied by bone resorption. In this study, we examined the roles of PGE2 in osteolysis due to bone metastasis of breast cancer. Injection of human breast cancer cells, MDA-MB-231 (MDA-231), into nude mice causes severe osteolysis in the femur and tibia. The expression of cyclo-oxygenase-2 (COX-2) and the receptor activator of NF-kappaB ligand (RANKL), a key molecule in osteoclast differentiation, mRNAs was markedly elevated in bone with metastasis. When MDA-231 cells were cocultured with mouse calvaria, COX-2-induced PGE2 production and bone resorption progressed. The contact with MDA-231 cells could induce the expression of COX-2 and RANKL in osteoblasts by mechanisms involving MAP kinase and NF-kappaB. The blockage of PGE2 signal by indomethacin and EP4 antagonist abrogated the osteoclast formation induced by the breast cancer cells. Here, we show a PGE-dependent mechanism of osteolysis due to bone metastasis.  相似文献   

9.
Here, we show that miR‐515‐5p inhibits cancer cell migration and metastasis. RNA‐seq analyses of both oestrogen receptor receptor‐positive and receptor‐negative breast cancer cells overexpressing miR‐515‐5p reveal down‐regulation of NRAS, FZD4, CDC42BPA, PIK3C2B and MARK4 mRNAs. We demonstrate that miR‐515‐5p inhibits MARK4 directly 3′ UTR interaction and that MARK4 knock‐down mimics the effect of miR‐515‐5p on breast and lung cancer cell migration. MARK4 overexpression rescues the inhibitory effects of miR‐515‐5p, suggesting miR‐515‐5p mediates this process through MARK4 down‐regulation. Furthermore, miR‐515‐5p expression is reduced in metastases compared to primary tumours derived from both in vivo xenografts and samples from patients with breast cancer. Conversely, miR‐515‐5p overexpression prevents tumour cell dissemination in a mouse metastatic model. Moreover, high miR‐515‐5p and low MARK4 expression correlate with increased breast and lung cancer patients' survival, respectively. Taken together, these data demonstrate the importance of miR‐515‐5p/MARK4 regulation in cell migration and metastasis across two common cancers.  相似文献   

10.
Kaempferol (kaem) is a dietary flavonoid found in a variety of fruits and vegetables. The inhibitory effects of kaem on primary tumour growth have been extensively investigated; however, its effects on tumour metastasis are largely unknown. In the present study, we found that kaem significantly suppresses both primary tumour growth and lung metastasis in mouse breast tumour model. Furthermore, decreased expression of citrullinated histone H3 (H3‐cit), a biomarker of neutrophil extracellular traps (NETs), had been founded in metastatic lung upon treated with kaem. The reduction of H3‐cit is not, however, due to the cytotoxicity of kaem on neutrophils since the frequency of CD11b+Ly6G+ neutrophils did not change in lung, tumour or blood in the presence of kaem. We then confirm the anti‐NETs effects of kaem in vitro by co‐culturing mouse neutrophils and kaem. Supplementing the neutrophils with GSK484, a potent NET inhibitor, totally abrogated the inhibitory effects of kaem on tumour metastasis while having little or no impact on primary tumour growth, indicating the specificity of kaem acting on NET formation and tumour metastasis. We also found that kaem suppressed ROS production in mouse bone‐marrow derived neutrophils. Supplementing with the ROS scavenger DPI abrogated kaem's effects on NET formation, suggesting the involvement of kaempferol in NADPH/ROS‐NETs signalling. Finally, we applied the kaem on NET‐deficient PAD4‐/‐ mice and found decreased primary tumour volume and weight but similar lung metastatic tumour with kaempferol treatment. Therefore, our findings reveal a novel mechanism of kaem in breast cancer development by targeting NETs induced tumour metastasis.  相似文献   

11.
12.
Recent evidence suggests that breast cancer is one of the most common forms of malignancy in females, and metastasis from the primary cancer site is the main cause of death. Aromatic (ar)‐turmerone is present in Curcuma longa and is a common remedy and food. In the present study, we investigated the inhibitory effects of ar‐turmerone on expression and enzymatic activity levels of 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA)‐induced matrix metalloproteinase (MMP)‐9 and cyclooxygenaase‐2 (COX‐2) in breast cancer cells. Our data indicated that ar‐turmerone treatment significantly inhibited enzymatic activity and expression of MMP‐9 and COX‐2 at non‐cytotoxic concentrations. However, the expression of tissue inhibitor of metalloproteinase (TIMP)‐1, TIMP‐2, MMP‐2, and COX‐1 did not change upon ar‐turmerone treatment. We found that ar‐turmerone inhibited the activation of NF‐κB, whereas it did not affect AP‐1 activation. Moreover, The ChIP assay revealed that in vivo binding activities of NF‐κB to the MMP‐9 and COX‐2 promoter were significantly inhibited by ar‐turmerone. Our data showed that ar‐turmerone reduced the phosphorylation of PI3K/Akt and ERK1/2 signaling, whereas it did not affect phosphorylation of JNK or p38 MAPK. Thus, transfection of breast cancer cells with PI3K/Akt and ERK1/2 siRNAs significantly decreased TPA‐induced MMP‐9 and COX‐2 expression. These results suggest that ar‐turmerone suppressed the TPA‐induced up‐regulation of MMP‐9 and COX‐2 expression by blocking NF‐κB, PI3K/Akt, and ERK1/2 signaling in human breast cancer cells. Furthermore, ar‐turmerone significantly inhibited TPA‐induced invasion, migration, and colony formation in human breast cancer cells. J. Cell. Biochem. 113: 3653–3662, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
14.
The increased migration and invasion of breast carcinoma cells are key events in the development of metastasis to the lymph nodes and distant organs. CXCR4, the receptor for stromal‐derived factor‐1, is reportedly involved in breast carcinogenesis and invasion. In this study, we investigated a novel biphenyl urea derivate, TPD7 for its ability to affect CXCR4 expression as well as function in breast cancer cells. We demonstrated that TPD7 inhibited the breast cancer proliferation and down‐regulated the CXCR4 expression on breast cancer cells both over‐expressing and low‐expressing HER2, an oncogene known to induce the chemokine receptor. Treatments with pharmacological proteasome inhibitors partial suppressed TPD7‐induced decrease in CXCR4 expression. Real‐time PCR analysis revealed that down‐regulation of CXCR4 by TPD7 also occurred at the translational level. Inhibition of CXCR4 expression by TPD7 further correlated with the suppression of SDF‐1α‐induced migration and invasion in breast tumour cells, knockdown of CXCR4 attenuated TPD7‐inhibitory effects. In addition, TPD7 treatment significantly suppressed matrix metalloproteinase (MMP)‐2 and MMP‐9 expression, the downstream targets of CXCR4, perhaps via inactivation of the ERK signaling pathway. Overall, our results showed that TPD7 exerted its anti‐invasive effect through the down‐regulation of CXCR4 expression and thus had the potential for the treatment of breast cancer.  相似文献   

15.
Tumour protein p53‐inducible nuclear protein 1 (TP53INP1) is a tumour suppressor associated with malignant tumour metastasis. Vasculogenic mimicry (VM) is a new tumour vascular supply pattern that significantly influences tumour metastasis and contributes to a poor prognosis. However, the molecular mechanism of the relationship between TP53INP1 and breast cancer VM formation is unknown. Here, we explored the underlying mechanism by which TP53INP1 regulates VM formation in vitro and in vivo. High TP53INP1 expression was not only negatively correlated with a poor prognosis but also had a negative relationship with VE‐cadherin, HIF‐1α and Snail expression. TP53INP1 overexpression inhibited breast cancer invasion, migration, epithelial‐mesenchymal transition (EMT) and VM formation; conversely, TP53INP1 down‐regulation promoted these processes in vitro by functional experiments and Western blot analysis. We established a hypoxia model induced by CoCl2 and assessed the effects of TP53INP1 on hypoxia‐induced EMT and VM formation. In addition, we confirmed that a reactive oxygen species (ROS)‐mediated signalling pathway participated in TP53INP1‐mediated VM formation. Together, our results show that TP53INP1 inhibits hypoxia‐induced EMT and VM formation via the ROS/GSK‐3β/Snail pathway in breast cancer, which offers new insights into breast cancer clinical therapy.  相似文献   

16.
BackgroundMetastasis is the most common lethal cause of breast cancer-related death. Recent studies have implied that autophagy is closely implicated in cancer metastasis. Therefore, it is of great significance to explore autophagy-related molecular targets involved in breast cancer metastasis and to develop therapeutic drugs.PurposeThis study was designed to investigate the anti-metastatic effects and autophagy regulatory mechanisms of Aiduqing (ADQ) formula on breast cancer.Study Design/MethodsMultiple cellular and molecular experiments were conducted to investigate the inhibitory effects of ADQ formula on autophagy and metastasis of breast cancer cells in vitro. Meanwhile, autophagic activator/inhibitor as well as CXCL1 overexpression or interference plasmids were used to investigate the underlying mechanisms of ADQ formula in modulating autophagy-mediated metastasis. Furthermore, the zebrafish xenotransplantation model and mouse xenografts were applied to validate the inhibitory effect of ADQ formula on autophagy-mediated metastasis in breast cancer in vivo.ResultsADQ formula significantly inhibited the proliferation, migration, invasion and autophagy but induced apoptosis of high-metastatic breast cancer cells in vitro. Similar results were also observed in starvation-induced breast cancer cells which exhibited elevated metastatic ability and autophagy activity. Mechanism investigations further approved that either CXCL1 overexpression or autophagic activator rapamycin can significantly abrogated the anti-metastatic effects of ADQ formula, suggesting that CXCL1-mediated autophagy may be the crucial pathway of ADQ formula in suppressing breast cancer metastasis. More importantly, ADQ formula suppressed breast cancer growth, autophagy, and metastasis in both the zebrafish xenotransplantation model and the mouse xenografts.ConclusionOur study not only revealed the novel function of CXCL1 in mediating autophagy-mediated metastasis but also suggested ADQ formula as a candidate drug for the treatment of metastatic breast cancer.  相似文献   

17.
Stanniocalcin (STC), a glycoprotein hormone, is expressed in a wide variety of tissues to regulate Ca2+ and PO4- homeostasis. STC2, a member of STC family, has been reported to be associated with tumor development. In this study, we investigated whether the expression of STC2 is associated with migration and invasion of breast cancer cells. We found that breast cancer cell line 231 HM transfected with STC2 shRNA displayed high motility, fibroblast morphology, and enhanced cell migration and invasion. Introduction of STC2 in 231 cells reduced cell migration and invasion. In response to irradiation, silencing of STC2 in 231 HM cells reduced apoptosis, whereas overexpression of STC2 in 231 cells promoted apoptosis, compared with in control cells. Mechanistic study showed that STC2 negatively regulated PKC to control the expression of Claudin-1, which subsequently induced the expressions of EMT-related factors including ZEB1, ZO-1, Slug, Twist, and MMP9. Suppression of PKC activity by using a PKC inhibitor (Go 6983) restored the normal motility of STC2-silenced cells. Furthermore, in vivo animal assay showed that STC2 inhibited tumorigenesis and metastasis of breast cancer cells. Collectively, these results indicate that STC2 may inhibit EMT at least partially through the PKC/Claudin-1-mediated signaling in human breast cancer cells. Thus, STC2 may be exploited as a biomarker for metastasis and targeted therapy in human breast cancer.  相似文献   

18.
miR‐516a‐3p has been reported to play a suppressive role in several types of human tumours. However, the expression level, biological function and fundamental mechanisms of miR‐516a‐3p in breast cancer remain unclear. In the present study, we found that miR‐516a‐3p expression was down‐regulated and Pygopus2 (Pygo2) expression was up‐regulated in human breast cancer tissues and cells. Through analysing the clinicopathological characteristics, we demonstrated that low miR‐516a‐3p expression or positive Pygo2 expression was a predictor of poor prognosis for patients with breast cancer. The results of a dual luciferase reporter assay and Western blot analysis indicated that Pygo2 was a target gene of miR‐516a‐3p. Moreover, overexpression of miR‐516a‐3p inhibited cell growth, migration and invasion as well as epithelial‐mesenchymal transition (EMT) of breast cancer cells, whereas reduced miR‐516a‐3p expression promoted breast cancer cell growth, migration, invasion and EMT. Furthermore, we showed that miR‐516a‐3p suppressed cell proliferation, metastasis and EMT of breast cancer cells by inhibiting Pygo2 expression. We confirmed that miR‐516a‐3p exerted an anti‐tumour effect by inhibiting the activation of the Wnt/β‐catenin pathway. Finally, xenograft tumour models were used to show that miR‐516a‐3p inhibited breast cancer cell growth and EMT via suppressing the Pygo2/Wnt signalling pathway. Taken together, these results show that miR‐516a‐3p inhibits breast cancer cell growth, metastasis and EMT by blocking the Pygo2/ Wnt/β‐catenin pathway.  相似文献   

19.
Odontogenic ameloblast‐associated protein (ODAM) contributes to cell adhesion. In human cancer, ODAM is down‐regulated, and the overexpression of ODAM results in a favourable prognosis; however, the molecular mechanisms underlying ODAM‐mediated inhibition of cancer invasion and metastasis remain unclear. Here, we identify a critical role for ODAM in inducing cancer cell adhesion. ODAM induced RhoA activity and the expression of downstream factors, including Rho‐associated kinase (ROCK). ODAM‐mediated RhoA signalling resulted in actin filament rearrangement by activating PTEN and inhibiting the phosphorylation of AKT. When ODAM is overexpressed in MCF7 breast cancer cells and AGS gastric cancer cells that activate RhoA at high levels, it decreases motility, increases adhesion and inhibits the metastasis of MCF7 cells. Conversely, depletion of ODAM in cancer cells inhibits Rho GTPase activation, resulting in increased cancer migration and invasion. These results suggest that ODAM expression in cells maintains their adhesion, resulting in the prevention of their metastasis via the regulation of RhoA signalling in breast cancer cells. Copyright © 2015 John Wiley & Sons, Ltd. SIGNIFICANCE Breast cancer represents the first most frequent cancer, and the ratio of mortality is high in women. Of utmost importance for reducing risk by breast cancer are their anti‐invasion mechanisms, particularly in the non‐invasive cancer cells because metastasis is the principal cause of death among cancer patients. ODAM induced RhoA activity. ODAM‐mediated RhoA signalling resulted in actin filament rearrangement, increased cell adhesion and inhibited the migration/invasion of MCF7 cells. These results suggest that ODAM expression maintains their adhesion, resulting in the prevention of their metastasis via the regulation of RhoA signalling in breast cancer cells.  相似文献   

20.
Radiotherapy is a widely used treatment for cancer. However, recent studies suggest that ionizing radiation (IR) can promote tumor invasion and metastasis. Bmi-1, a member of the polycomb group protein family, has been observed as a regulator of oxidative stress and promotes metastasis in some tumors. But, its potential role in the metastasis induced by IR of breast cancer has not been explored. In our study, we found that increased levels of Bmi-1 were correlated to EMT of breast cancer cells. Through analyzing the EMT state and metastasis of breast cancer induced by IR, we found the metastatic potential of breast cancer cells can either be inhibited or accelerated by IR following a time-dependent pattern. Silencing Bmi-1 completely abolished the ability of the IR to alter, reduce or increase, the migration of breast cancer cells. Also, when Bmi-1 was knocked down, the effect of inhibition of PI3K/AKT signaling on EMT affected by IR was blocked. These results suggest that Bmi-1 is a key gene in regulation of EMT and migration of breast cancer cells induced by IR through activation of PI3K/AKT signaling; therefore, Bmi-1 could be a new target for inhibiting metastasis caused by IR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号