首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The pathogenesis of cardiac hypertrophy is tightly associated with activation of intracellular hypertrophic signalling pathways, which leads to the synthesis of various proteins. Tripartite motif 10 (TRIM10) is an E3 ligase with important functions in protein quality control. However, its role in cardiac hypertrophy was unclear. In this study, neonatal rat cardiomyocytes (NRCMs) and TRIM10-knockout mice were subjected to phenylephrine (PE) stimulation or transverse aortic constriction (TAC) to induce cardiac hypertrophy in vitro and in vivo, respectively. Trim10 expression was significantly increased in hypertrophied murine hearts and PE-stimulated NRCMs. Knockdown of TRIM10 in NRCMs alleviated PE-induced changes in the size of cardiomyocytes and hypertrophy gene expression, whereas TRIM10 overexpression aggravated these changes. These results were further verified in TRIM10-knockout mice. Mechanistically, we found that TRIM10 knockout or knockdown decreased AKT phosphorylation. Furthermore, we found that TRIM10 knockout or knockdown increased ubiquitination of phosphatase and tensin homolog (PTEN), which negatively regulated AKT activation. The results of this study reveal the involvement of TRIM10 in pathological cardiac hypertrophy, which may occur by prompting of PTEN ubiquitination and subsequent activation of AKT signalling. Therefore, TRIM10 may be a promising target for treatment of cardiac hypertrophy.  相似文献   

3.
4.
5.
6.
LncRNAs exhibit crucial roles in various pathological diseases, including hepatocellular carcinoma (HCC). Therefore, it is significant to recognize the dysregulated lncRNAs in HCC progression. Recently, LINC01133 has been identified in several tumors. However, the biological role of LINC01133 in HCC remains poorly understood. Currently, we focused on the function of LINC01133 in HCC development. We observed that LINC01133 was significantly increased in HCC cells including HepG2, Hep3B, MHCC-97L, SK-Hep-1, and MHCC-97H cells compared with the normal human liver cell line HL-7702. In addition, PI3K/AKT signaling was highly activated in HCC cells. Knockdown of LINC01133 was able to inhibit HCC cell proliferation, cell colony formation, cell apoptosis, and blocked cell cycle arrest in the G1 phase. For another, downregulation of LINC01133 repressed HCC cell migration and invasion. Subsequently, the PI3K/AKT signaling pathway was strongly suppressed by silence of LINC01133 in Hep3B and HepG2 cells. Then, in vivo tumor xenografts models were established using Hep3B cells to explore the function of LINC01133 in HCC progression. Consistently, our study indicated that knockdown of LINC01133 dramatically repressed HCC tumor progression through targeting the PI3K/AKT pathway in vivo. Taken these together, we revealed that LINC01133 contributed to HCC progression by activating the PI3K/AKT pathway.  相似文献   

7.
Hepatocellular carcinoma (HCC) is one of the common malignant human tumors with high morbidity worldwide. Aberrant activation of the oncogenic phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling is related to clinicopathological features of HCC. Emerging data revealed that microRNAs (miRNAs) have prominent implications for regulating cellular proliferation, differentiation, apoptosis, and metabolism through targeting the PI3K/AKT/mTOR signaling axis. The recognition of the crucial role of miRNAs in hepatocarcinogenesis represents a promising area to identify novel anticancer therapeutics for HCC. The present study summarizes the major findings about the regulatory role of miRNAs in the PI3K/AKT/mTOR pathway in the pathogenesis of HCC.  相似文献   

8.
Increasing evidence has demonstrated that abnormal expression of lncRNA is correlated with various malignant tumors, including hepatocellular carcinoma (HCC). Our current study was aimed to investigate the role of LINC00707 in HCC development. We observed that LINC00707 was upregulated in HCC cell lines compared with normal liver cell lines. Then, Hep3B cells and SNU449 cells were infected with LV-shLINC00707 and LV-LINC00707. LINC00707 silencing could greatly repress the proliferation and colony formation of HCC cells in vitro. On the contrary, overexpression of LINC00707 induced HCC cell proliferation and colony formation. In addition, HCC cell apoptosis was significantly enhanced and HCC cell cycle was blocked in G1 phase by LV-shLINC00707. Hep3B cells and SNU449 cell invasion capacity was restrained by the knockdown of LINC00707, whereas upregulation of LINC00707 exhibited an opposite phenomenon. Accumulating evidence has reported that ERK/JNK/AKT signaling is involved in multiple cancers, including HCC. Here, in our study, we identified that ERK/JNK/AKT signaling was dramatically restrained by silencing of LINC00707 while activated by LV-LINC00707 in HCC cells. Subsequently, an in vivo experiment was conducted, and it demonstrated that LINC00707 could modulate HCC development through activating ERK/JNK/AKT signaling. Taking the above results together, it was implied in our study that LINC00707 contributed to HCC progression through modulating the ERK/JNK/AKT pathway.  相似文献   

9.
Tumor cell can be significantly influenced by various chemical groups of the extracellular matrix proteins. However, the underlying molecular mechanisms involved in the interaction between cancer cells and functional groups in the extracellular matrix remain unknown. Using chemically modified surfaces with biological functional groups (CH3, NH2, OH), it was found that hydrophobic surfaces modified with CH3 and NH2 suppressed cell proliferation and induced the number of apoptotic cells. Mitochondrial dysfunction, cytochrome c release, Bax upregulation, cleaved caspase-3 and PARP, and Bcl-2 downregulation indicated that hydrophobic surfaces with CH3 and NH2 triggered the activation of intrinsic apoptotic signaling pathway. Cells on the CH3- and NH2-modified hydrophobic surfaces showed downregulated expression and activation of integrin β1, with a subsequent decrease of focal adhesion kinase (FAK) activity. The RhoA/ROCK/PTEN signaling was then activated to inhibit the phosphorylation of PI3K and AKT, which are essential for cell proliferation. However, pretreatment of MDA-MB-231 cells with SF1670, a PTEN inhibitor, abolished the hydrophobic surface-induced activation of the intrinsic pathway. Taken together, the present results indicate that CH3- and NH2-modified hydrophobic surfaces induce mitochondria-mediated apoptosis by suppressing the PTEN/PI3K/AKT pathway, but not OH surfaces. These findings are helpful to understand the interaction between extracellular matrix and cancer cells, which might provide new insights into the mechanism potential intervention strategies for tumor prognosis.  相似文献   

10.
11.
12.
13.
TSPYL5, encoding testis-specific Y-like protein, has been postulated to be a tumor suppressor gene, and its hypermethylation is often associated with human disease, especially cancer. In this study, we report that the TSPYL5 gene was less methylated (30%) in A549 lung adenocarcinoma cells, which are relatively resistant to γ-radiation, than in H460 lung cancer cells, in which the TSPYL5 gene was hypermethylated (95%); thus, the expression level of TSPYL5 is much higher in A549 cells than in H460 cells. We showed that TSPYL5 suppression with silencing RNA in A549 cells up-regulated cellular PTEN, followed by down-regulation of AKT activation. Therefore, blockage of TSPYL5 sensitized A549 cells to cytotoxic agents such as γ-radiation. In addition, TSPYL5 suppression also showed an increased level of p21WAF1/Cip1 and subsequently induced inhibition of cell growth in A549 cells. The overexpression of TSPYL5 in H460 cells showed the opposite effects. This study provides the first demonstration that TSPYL5 modulates cell growth and sensitization of cells to the detrimental effects of damaging agents via regulation of p21WAF1/Cip1 and PTEN/AKT pathway.  相似文献   

14.
15.
To explore the relationship between autophagy and cell function, we investigated how PLAC8‐mediated autophagy influences proliferation, apoptosis and epithelial‐mesenchymal transition (EMT) in NPC. Colony formation analyses and CCK8 assays were used to assess the proliferative capacity of NPC cells. Transmission electron microscopy (TEM) was used to identify autophagosomes. Autophagic flux was monitored using the tandem monomeric RFP‐GFP‐tagged LC3 (tfLC3) assay. The rate of apoptosis in NPC cells was analysed by flow cytometry. Western blot analysis was used to evaluate the activation of autophagy and the signalling status of the AKT/mTOR pathway. Our study reveals that knocking out PLAC8 (koPLAC8) induces autophagy and apoptosis, while suppressing NPC cell proliferation and EMT. However, inhibition of autophagy with 3‐methyladenine or by knocking down Beclin‐1 reverses the cell proliferation, apoptosis and EMT influenced by koPLAC8. We find that koPLAC8 inhibits the phosphorylation of AKT and its downstream target, mTOR. Moreover, immunofluorescence and co‐immunoprecipitation reveal complete PLAC8/AKT colocalization and PLAC8/AKT interaction, respectively. Furthermore, knockout of PLAC8 induced autophagy and inactivated AKT/mTOR signalling pathway of NPC xenografts. Overall, our findings demonstrate that koPLAC8 induces autophagy via the AKT/mTOR pathway, thereby inhibiting cell proliferation and EMT, and promoting apoptosis in NPC cells.  相似文献   

16.
Glioma is one of the most common malignancies in the world. However, an effective regiment is lacking. Increasing evidence indicated that PI3K/AKT signaling is critical for the survival of glioma. In this study, we aimed to study the effect of aplysin on the survival and proliferation of GL26 glioma cells and the involved mechanisms. The data showed that aplysin suppressed the viability of glioma cells in both dose- and time-dependent manners. It also induced G0/G1 arrest and apoptosis in glioma cells. Western blot assays revealed that aplysin treatment changed p-AKT expression by impairing the formation of Heat shock protein 90/AKT complex. Aplysin significantly increased the survival time of mice-bearing glioma and reduced the weights of the established gliomas. Collectively, aplysin can inhibit the proliferation of GL26 glioma cells and induce apoptosis in vitro, perhaps through suppressing PI3K/AKT pathway. It can also inhibit glioma growth in vivo and prolong the survival of mice. Thus, aplysin may be a novel therapeutic drug for glioma.  相似文献   

17.
ABSTRACT

Gallbladder carcinoma (GBC) is a highly lethal malignancy of the gastrointestinal tract. Despite extensive research, the underlying molecular mechanism of GBC remains largely unclear. Deleted in malignant brain tumors 1 (DMBT1) is low-expression during cancer progression and as a potential tumor-suppressor gene in various types of cancer. However, its role in Gallbladder cancer remains poorly understood. Here, we found that DMBT1 was significantly low-expression and deletion of copy number in GBC tissues by qRT-PCR and Western blot. Overexpression of DMBT1 impaired survival, promoted apoptosis in GBC cells in vitro, and inhibited tumor progression in vivo. Further study of underlying mechanisms demonstrated that DMBT1 combined with PTEN which could stabilize PTEN protein, resulting in inhibiting the activation of PI3K/AKT signaling pathway. Our study revealed a new sight of DMBT1 as a tumor-suppressor gene on the PI3K/AKT pathway in GBC, which may be a potential therapeutic target for improving treatment.  相似文献   

18.
19.
Increasing autophagy is beneficial for curing hepatocellular carcinoma (HCC). Damage-regulated autophagy modulator (DRAM) was recently reported to induce apoptosis by mediating autophagy. However, the effects of DRAM-mediated autophagy on apoptosis in HCC cells remain unclear. In this study, normal hepatocytes (7702) and HCC cell lines (HepG2, Hep3B and Huh7) were starved for 48 h. Starvation induced apoptosis and autophagy in all cell lines. We determined that starvation also induced DRAM expression and DRAM-mediated autophagy in both normal hepatocytes and HCC cells. However, DRAM-mediated autophagy was involved in apoptosis in normal hepatocytes but not in HCC cells, suggesting that DRAM-mediated autophagy fails to induce apoptosis in hepatoma in response to starvation. Immunoblot and immunofluorescence assays demonstrated that DRAM translocated to mitochondria and induced mitophagy, which led to apoptosis in 7702 cells. In HCC cells, starvation also activated the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which blocks the translocation of DRAM to mitochondria through the binding of p-AKT to DRAM in the cytoplasm. Inactivation of the PI3K/AKT pathway rescued DRAM translocation to mitochondria; subsequently, mitochondrial DRAM induced apoptosis in HCC cells by mediating mitophagy. Our findings open new avenues for the investigation of the mechanisms of DRAM-mediated autophagy and suggest that promoting DRAM-mediated autophagy together with PI3K/AKT inhibition might be more effective for autophagy-based therapy in hepatoma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号