首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Mesenchymal stem cells (MSCs) can differentiate into neurons in an appropriate cellular environment. Retinoid signaling pathway is required in neural development. However, the effect and mechanism through retinoid signaling regulates neuronal differentiation of MSCs are still poorly understood. Here, we report that all‐trans‐retinoic acid (ATRA) pre‐induction improved neuronal differentiation of rat MSCs. We found that, when MSCs were exposed to different concentrations of ATRA (0.01–100 μmol/L) for 24 h and then cultured with modified neuronal induction medium (MNM), 1 μmol/L ATRA pre‐induction significantly improved neuronal differentiation efficiency and neural‐cell survival. Compared with MNM alone induced neural‐like cells, ATRA/MNM induced cells expressed higher levels of Nestin, neuron specific enolase (NSE), microtubule‐associated protein‐2 (MAP‐2), but lower levels of CD68, glial fibrillary acidic protein (GFAP), and glial cell line‐derived neurotrophic factor(GDNF), also exhibited higher resting membrane potential and intracellular calcium concentration, supporting that ATRA pre‐induction promotes maturation and function of derived neurons but not neuroglia cells from MSCs. Endogenous retinoid X receptors (RXR) RXRα and RXRγ (and to a lesser extent, RXRβ) were weakly expressed in MSCs. But the expression of RARα and RARγ was readily detectable, whereas RARβ was undetectable. However, at 24 h after ATRA treatment, the expression of RARβ, not RARα or RARγ, increased significantly. We further found the subnuclear redistribution of RARβ in differentiated neurons, suggesting that RARβ may function as a major mediator of retinoid signaling during neuronal differentiation from MSCs. ATRA treatment upregulated the expression of Vimentin and Stra13, while it downregulated the expression of Brachyury in MSCs. Thus, our results demonstrate that pre‐activation of retinoid signaling by ATRA facilitates neuronal differentiation of MSCs.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
An increase in MMP‐9 gene expression and enzyme activity with stimulating the migration of GBM8401 glioma cells via wound healing assay by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) was detected in glioblastoma cells GBM8401. TPA‐induced translocation of protein kinase C (PKC)α from the cytosol to membranes, and migration of GBM8401 elicited by TPA was suppressed by adding the PKCα inhibitors, GF109203X and H7. Activation of extracellular signal‐regulated kinase (ERK) and c‐Jun‐N‐terminal kinase (JNK) by TPA was identified, and TPA‐induced migration and MMP‐9 activity was significantly blocked by ERK inhibitor PD98059 and U0126, but not JNK inhibitor SP600125. Activation of NF‐κB protein p65 nuclear translocation and IκBα protein phosphorylation with increased NF‐κB‐directed luciferase activity by TPA were observed, and these were blocked by the PD98059 and IkB inhibitor BAY117082 accompanied by reducing migration and MMP‐9 activity induced by TPA in GBM8401 cells. Transfection of GBM8401 cells with PKCα siRNA specifically reduced PKCα protein expression with blocking TPA‐induced MMP‐9 activation and migration. Additionally, suppression of TPA‐induced PKCα/ERK/NK‐κB activation, migration, and MMP‐9 activation by flavonoids including kaempferol (Kae; 3,5,7,4′‐tetrahydroxyflavone), luteolin (Lut; 5,7,3′4′‐tetrahydroxyflavone), and wogonin (Wog; 5,7‐dihydroxy‐8‐methoxyflavone) was demonstrated, and structure–activity relationship (SAR) studies showed that hydroxyl (OH) groups at C4′ and C8 are critical for flavonoids' action against MMP‐9 enzyme activation and migration/invasion of glioblastoma cells elicited by TPA. Application of flavonoids to prevent the migration/invasion of glioblastoma cells through blocking PKCα/ERK/NF‐κB activation is first demonstrated herein. J. Cell. Physiol. 225: 472–481, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
14.
15.
Extracellular and intracellular mediators of inflammation, such as tumor necrosis factor alpha (TNFα) and NF‐kappaB (NF‐κB), play major roles in breast cancer pathogenesis, progression and relapse. SLUG, a mediator of the epithelial–mesenchymal transition process, is over‐expressed in CD44+/CD24? tumor initiating breast cancer cells and in basal‐like carcinoma, a subtype of aggressive breast cancer endowed with a stem cell‐like gene expression profile. Cancer stem cells also over‐express members of the pro‐inflammatory NF‐κB network, but their functional relationship with SLUG expression in breast cancer cells remains unclear. Here, we show that TNFα treatment of human breast cancer cells up‐regulates SLUG with a dependency on canonical NF‐κB/HIF1α signaling, which is strongly enhanced by p53 inactivation. Moreover, SLUG up‐regulation engenders breast cancer cells with stem cell‐like properties including enhanced expression of CD44 and Jagged‐1 in conjunction with estrogen receptor alpha down‐regulation, growth as mammospheres, and extracellular matrix invasiveness. Our results reveal a molecular mechanism whereby TNFα, a major pro‐inflammatory cytokine, imparts breast cancer cells with stem cell‐like features, which are connected to increased tumor aggressiveness. J. Cell. Physiol. 225: 682–691, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Human non‐small cell lung cancer (NSCLC) is one of the leading causes of cancer deaths worldwide. Estrogenic signals have been suggested to be important for the growth and metastasis of NSCLC cells. Our present data showed that estrogen‐related receptor alpha (ERRα), while not ERRβ or ERRγ, was significantly elevated in NSCLC cell lines as compared with that in normal bronchial epithelial cell line BEAS‐2B. The expression of ERRα in clinical NSCLC tissues was significantly greater than that in their matched normal adjacent tissues. Over expression of ERRα can trigger the proliferation, migration, and invasion of NSCLC cells, while si‐ERRα or ERRα inhibitor showed opposite effects. ERRα can increase the mRNA and protein expression of IL‐6, while not IL‐8, IL‐10, IL‐22, VEGF, TGF‐β, or TNF‐α, in NSCLC cells. Silence of IL‐6 attenuated ERRα induced proliferation and cell invasion. Furthermore, our data revealed the inhibition of NF‐κB, while not ERK1/2 or PI3K/Akt, abolished ERRα induced production of IL‐6. This might be due to that overexpression of ERRα can increase the expression and nuclear translocation of p65 in NSCLC cells. Collectively, our data showed that activation of NF‐κB/IL‐6 is involved in ERRα induced migration and invasion of NSCLC cells. It suggested that ERRα might be a potential target for NSCLC treatment.  相似文献   

17.
Mesenchymal stem cells (MSCs) have been investigated to treat liver diseases, but the efficiency of MSCs to treat chronic liver diseases is conflicting. FGF21 can reduce inflammation and fibrosis. We established FGF21‐secreting adipose derived stem cells (FGF21_ADSCs) to enhance the effects of ADSCs and transplanted them into thioacetamide (TAA)‐induced liver fibrosis mice via the tail vein. Transplantation of FGF21_ADSCs significantly improved liver fibrosis by decreasing serum hyaluronic acid and reducing the expression of fibrosis‐related factors such as α‐smooth muscle actin (α‐SMA), collagen and tissue inhibitor of metalloproteinase‐1 (TIMP‐1) compared with the Empty_ADSCs by inhibition of p‐JNK, NF‐κB and p‐Smad2/3 signalling. α‐lactoalbumin (LA) and lactotransferrin (LTF), secretory factors produced from FGF21_ADSCs inhibited TGF‐β1‐induced expression of α‐SMA and collagen in LX‐2 cells. These results suggest that transplantation of FGF21_ADSCs inhibited liver fibrosis more effectively than Empty_ADSCs, possibly via secretion of α‐LA and LTF.  相似文献   

18.
This study examined the role of arachidonic acid (AA) in hypoxia‐induced production of interleukin (IL)‐6 and its related signaling pathways in mouse embryonic stem (ES) cells. Hypoxia with AA induced IL‐6 production, which was mediated by reactive oxygen species (ROS). In addition, hypoxia increased the levels of p38 mitogen‐activated protein kinases (MAPKs) and stress‐activated protein kinase/c‐jun NH2‐terminal kinase (SAPK/JNK) phosphorylation, which were blocked by antioxidant (vitamin C). Inhibition of p38 MAPK and SAPK/JNK blocked hypoxia‐ or hypoxia with AA‐induced nuclear factor‐kappa B (NF‐κB) activation. Furthermore, hypoxia‐induced increase in hypoxia‐inducible factor‐1α (HIF‐1α) expression was regulated by NF‐κB activation. Consequently, the increased HIF‐1α expression induced activation of matrix metalloproteinase (MMP)‐2 and MMP‐9. The expression of each signaling molecule stimulated an increase in IL‐6 production that was greater in hypoxic conditions with AA than with hypoxia alone. Finally, inhibition of IL‐6 production using IL‐6 antibody or soluble IL‐6 receptor attenuated the hypoxia‐induced increases in DNA synthesis of mouse ES cells. In conclusion, AA potentiates hypoxia‐induced IL‐6 production through the MAPKs, NF‐κB, and HIF‐1α pathways in mouse ES cells. J. Cell. Physiol. 222: 574–585, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Differentiation of mesenchymal stem cells (MSCs) to hepatocyte‐like cells is associated with morphological and biological changes. In this study, the effect of hepatogenic differentiation on fatty acid profile and the expression of proliferator‐activated receptors‐α (PPAR‐α) have been studied. For this purpose, MSCs isolated from human umbilical cord were differentiated into hepatocyte‐like cells on selective culture media. The morphological and biochemical changes, PPAR‐α expression and reactive oxygen species (ROS) levels were studied during the differentiation process. Besides, the cells were processed to determine changes in fatty acid profile using gas chromatography analysis. The results showed that hepatic differentiation of the MSCs is associated with a decrease in major polyunsaturated fatty acids in mature hepatocytes, whereas there was an increase in the saturated fatty acid (SFA) levels during hepatocyte maturation. The differentiation‐dependent shift in the ratio of SFA/USFA was associated with changes in albumin and PPAR‐α expression, whereas changes in fatty acid profile were independent of ROS production and lipid peroxidation in differentiating cells. In conclusion, these data may suggest that hepatocyte formation during the stem cell differentiation is associated with a shift in the fatty acid profile that is probably a normal phenomenon in hepatogenic differentiation of the MSCs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Osteosarcoma is characterized by a high malignant and metastatic potential. The chemokine stromal‐derived factor‐1α (SDF‐1α) and its receptor, CXCR4, play a crucial role in adhesion and migration of human cancer cells. Integrins are the major adhesive molecules in mammalian cells, and has been associated with metastasis of cancer cells. Here, we found that human osteosarcoma cell lines had significant expression of SDF‐1 and CXCR4 (SDF‐1 receptor). Treatment of osteosarcoma cells with SDF‐1α increased the migration and cell surface expression of αvβ3 integrin. CXCR4‐neutralizing antibody, CXCR4 specific inhibitor (AMD3100) or small interfering RNA against CXCR4 inhibited the SDF‐1α‐induced increase the migration and integrin expression of osteosarcoma cells. Pretreated of osteosarcoma cells with MAPK kinase (MEK) inhibitor PD98059 inhibited the SDF‐1α‐mediated migration and integrin expression. Stimulation of cells with SDF‐1α increased the phosphorylation of MEK and extracellular signal‐regulating kinase (ERK). In addition, NF‐κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) also inhibited SDF‐1α‐mediated cell migration and integrin up‐regulation. Stimulation of cells with SDF‐1α induced IκB kinase (IKKα/β) phosphorylation, IκB phosphorylation, p65 Ser536 phosphorylation, and κB‐luciferase activity. Furthermore, the SDF‐1α‐mediated increasing κB‐luciferase activity was inhibited by AMD3100, PD98059, PDTC and TPCK or MEK1, ERK2, IKKα and IKKβ mutants. Taken together, these results suggest that the SDF‐1α acts through CXCR4 to activate MEK and ERK, which in turn activates IKKα/β and NF‐κB, resulting in the activations of αvβ3 integrins and contributing the migration of human osteosarcoma cells. J. Cell. Physiol. 221: 204–212, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号