首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This study was aimed to explore the role of miR‐29b‐3p and PGRN in chondrocyte apoptosis and the initiation and progress of osteoarthritis (OA). Both miR‐29b‐3p and PGRN were up‐regulated in cartilage tissue from patients with OA. Transfection of miR‐29b‐3p mimic into rat primary chondrocytes and SW1353 chondrosarcoma cells significantly suppressed PGRN expression and release, induced apoptosis, inhibited proliferation and scratch wound closure. By contrast, transfection of miR‐29b‐3p inhibitor exhibited the opposite effects. Moreover, the expression and secretion of cartilaginous degeneration‐related molecules were also altered by miR‐29b‐3p. Luciferase reporter gene assay showed rat GRN mRNA is directly targeted and repressed by miR‐29b‐3p. The fact that recombinant PGRN or shPGRN‐mediated PGRN interference abolished miR‐29b‐3p mimic‐induced cell apoptosis and growth inhibition suggested miR‐29b‐3p affect the cellular functions of chondrocyte through regulating PGRN expression. In vivo, joint cavity injection of miR‐29b‐3p antagomir prior to surgical induction of OA significantly suppressed the upregulation of miR‐29b‐3p, whereas further promoted the increased expression of PGRN. Articular chondrocytes apoptosis and cartilage loss in the knee joint of surgically induced OA rats were also ameliorated by the injection of miR‐29b‐3p antagomir, demonstrated by TUNEL and safranin O‐fast green staining. This work showed miR‐29b‐3p facilitates chondrocyte apoptosis and OA by targeting PGRN, and miR‐29b‐3p or PGRN may be the potential target for OA treatments.  相似文献   

2.
3.
Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage degradation, in which elevated chondrocyte apoptosis and catabolic activity play an important role. MicroRNA‐155 (miR‐155) has recently been shown to regulate apoptosis and catabolic activity in some pathological circumstances, yet, whether and how miR‐155 is associated with OA pathology remain unexplored. We report here that miR‐155 level is significantly up‐regulated in human OA cartilage biopsies and also in primary chondrocytes stimulated by interleukin‐1β (IL‐1β), a pivotal pro‐catabolic factor promoting cartilage degradation. Moreover, miR‐155 inhibition attenuates and its overexpression promotes IL‐1β‐induced apoptosis and catabolic activity in chondrocytes in vitro. We also demonstrate that the PIK3R1 (p85α regulatory subunit of phosphoinositide 3‐kinase (PI3K)) is a target of miR‐155 in chondrocytes, and more importantly, PIK3R1 restoration abrogates miR‐155 effects on chondrocyte apoptosis and catabolic activity. Mechanistically, PIK3R1 positively regulates the transduction of PI3K/Akt pathway, and a specific Akt inhibitor reverses miR‐155 effects on promoting chondrocyte apoptosis and catabolic activity, phenocopying the results obtained via PIK3R1 knockdown, hence establishing that miR‐155 promotes chondrocyte apoptosis and catabolic activity through targeting PIK3R1‐mediated PI3K/Akt pathway activation. Altogether, our study discovers novel roles and mechanisms of miR‐155 in regulating chondrocyte apoptosis and catabolic activity, providing an implication for therapeutically intervening cartilage degradation and OA progression.  相似文献   

4.
5.
The aim of this study was to determine the mechanism underlying the association between one‐carbon metabolism and DNA methylation during chronic degenerative joint disorder, osteoarthritis (OA). Articular chondrocytes were isolated from human OA cartilage and normal cartilage biopsied, and the degree of cartilage degradation was determined by safranin O staining. We found that the expression levels of SHMT‐2 and MECP‐2 were increased in OA chondrocytes, and 3′UTR reporter assays showed that SHMT‐2 and MECP‐2 are the direct targets of miR‐370 and miR‐373, respectively, in human articular chondrocytes. Our experiments showed that miR‐370 and miR‐373 levels were significantly lower in OA chondrocytes compared to normal chondrocytes. Overexpression of miR‐370 or miR‐373, or knockdown of SHMT‐2 or MECP‐2 reduced both MMP‐13 expression and apoptotic cell death in cultured OA chondrocytes. In vivo, we found that introduction of miR‐370 or miR‐373 into the cartilage of mice that had undergone destabilization of the medial meniscus (DMM) surgery significantly reduced the cartilage destruction in this model, whereas introduction of SHMT‐2 or MECP‐2 increased the severity of cartilage destruction. Together, these results show that miR‐370 and miR‐373 contribute to the pathogenesis of OA and act as negative regulators of SHMT‐2 and MECP‐2, respectively.  相似文献   

6.
Primary osteoarthritis (OA) is associated with aging, while post‐traumatic OA (PTOA) is associated with mechanical injury and inflammation. It is not clear whether the two types of osteoarthritis share common mechanisms. We found that miR‐146a, a microRNA‐associated with inflammation, is activated by cyclic load in the physiological range but suppressed by mechanical overload in human articular chondrocytes. Furthermore, miR‐146a expression is decreased in the OA lesions of human articular cartilage. To understand the role of miR‐146a in osteoarthritis, we systemically characterized mice in which miR‐146a is either deficient in whole body or overexpressed in chondrogenic cells specifically. miR‐146a‐deficient mice develop early onset of OA characterized by cartilage degeneration, synovitis, and osteophytes. Conversely, miR‐146a chondrogenic overexpressing mice are resistant to aging‐associated OA. Loss of miR‐146a exacerbates articular cartilage degeneration during PTOA, while chondrogenic overexpression of miR‐146a inhibits PTOA. Thus, miR‐146a inhibits both OA and PTOA in mice, suggesting a common protective mechanism initiated by miR‐146a. miR‐146a suppresses IL‐1β of catabolic factors, and we provide evidence that miR‐146a directly inhibits Notch1 expression. Therefore, such inhibition of Notch1 may explain suppression of inflammatory mediators by miR‐146a. Chondrogenic overexpression of miR‐146a or intra‐articular administration of a Notch1 inhibitor alleviates IL‐1β‐induced catabolism and rescues joint degeneration in miR‐146a‐deficient mice, suggesting that miR‐146a is sufficient to protect OA pathogenesis by inhibiting Notch signaling in the joint. Thus, miR‐146a may be used to counter both aging‐associated OA and mechanical injury‐/inflammation‐induced PTOA.  相似文献   

7.
Osteoarthritis (OA) is a most common form of arthritis worldwide leading to significant disability. MicroRNAs (miRNAs) are non‐coding RNAs involved in various aspects of cartilage development, homoeostasis and pathology. Several miRNAs have been identified which have shown to regulate expression of target genes relevant to OA pathogenesis such as matrix metalloproteinase (MMP)‐13, cyclooxygenase (COX)‐2, etc. Epigallocatechin‐3‐O‐gallate (EGCG), the most abundant and active polyphenol in green tea, has been reported to have anti‐arthritic effects, however, the role of EGCG in the regulation of miRNAs has not been investigated in OA. Here, we showed that EGCG inhibits COX‐2 mRNA/protein expression or prostaglandin E2 (PGE2) production via up‐regulating microRNA hsa‐miR‐199a‐3p expression in interleukin (IL)‐1β‐stimulated human OA chondrocytes. This negative co‐regulation of hsa‐miR‐199a‐3p and COX‐2 by EGCG was confirmed by transfection of OA chondrocytes with anti‐miR‐199a‐3p. Transfection of OA chondrocytes with anti‐miR‐199a‐3p significantly enhanced COX‐2 expression and PGE2 production (P < 0.001), while EGCG treatment significantly inhibited anti‐miR‐199a‐3p transfection‐induced COX‐2 expression or PGE2 production in a dose‐dependent manner. These results were further re‐validated by co‐treatment of these transfection OA chondrocytes with IL‐1β and EGCG. EGCG treatment consistently up‐regulated the IL‐1β‐decreased hsa‐miR‐199a‐3p expression (P < 0.05) and significantly inhibited the IL‐1β‐induced COX‐2 expression/PGE2 production (P < 0.05) in OA chondrocytes transfected with anti‐hsa‐miR‐199a‐3p. Taken together, these results clearly indicate that EGCG inhibits COX‐2 expression/PGE2 production via up‐regulation of hsa‐miR‐199a‐3p expression. These novel pharmacological actions of EGCG on IL‐1β‐stimulated human OA chondrocytes provide new suggestions that EGCG or EGCG‐derived compounds inhibit cartilage breakdown or pain by up‐regulating the expression of microRNAs in human chondrocytes.  相似文献   

8.
Lee SW  Song YS  Lee SY  Yoon YG  Lee SH  Park BS  Yun I  Choi H  Kim K  Chung WT  Yoo YH 《PloS one》2011,6(4):e19163
Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF)-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA) model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence versus a cause of the degeneration in vivo.  相似文献   

9.
10.
It has been found that long noncoding RNA HOTAIR, microRNA‐130a (miR‐130a) and insulin‐like growth factor 1 (IGF1) expression are associated with ovarian cancer, thus, we hypothesised that the HOTAIR/miR‐130a/IGF1 axis might associate with endocrine disorders and biological behaviours of ovarian granulosa cells in rat models of polycystic ovary syndrome (PCOS). PCOS rat models were established by injection of dehydro‐isoandrosterone, followed by treatment of si‐HOTAIR, oe‐HOTAIR, miR‐130a mimics or miR‐130a inhibitors. Serum hormonal levels were determined to evaluate endocrine conditions. The effect of HOTAIR and miR‐130a on activities of isolated ovarian granulosa cells was assessed, as well as the involvement of IGF1.In the ovarian tissues and granulosa cells of PCOS rat models, highly expressed HOTAIR and IGF1 and poorly expressed miR‐130a were identified. In response to oe‐HOTAIR, serum levels of E2, T and LH were increased and serum levels of FSH were reduced; the proliferation of granulosa cells was reduced and apoptosis was promoted; notably, expression of miR‐130a was reduced while expression of IGF1 was increased. The treatment of si‐HOTAIR reversed the situation. Furthermore, the binding of HOTAIR to miR‐130a and targeting relationship of miR‐130a and IGF1 were confirmed. LncRNA HOTAIR up‐regulates the expression of IGF1 and aggravates the endocrine disorders and granulosa cell apoptosis through competitive binding to miR‐130a in rat models of PCOS. Based on our finding, we predict that competitive binding of HOTAIR to miR‐130a may act as a novel target for the molecular treatment of PCOS.  相似文献   

11.
Berberine, a plant alkaloid used in Chinese medicine, has broad cell‐protective functions in a variety of cell lines. Chondrocyte apoptosis contributes to the pathogenesis of cartilage degeneration in osteoarthritis (OA). However, little is known about the effect and underlying mechanism of berberine on OA chondrocytes. Here, we assessed the effects of berberine on cartilage degeneration in interleukin‐1β (IL‐1β)‐stimulated rat chondrocytes and in a rat model of OA. The results of an MTT assay and western blotting analysis showed that berberine attenuated the inhibitory effect of IL‐1β on the cell viability and proliferating cell nuclear antigen expression in rat chondrocytes. Furthermore, berberine activated Akt, which triggered p70S6K/S6 pathway and up‐regulated the levels of aggrecan and Col II expression in IL‐1β‐stimulated rat chondrocytes. In addition, berberine increased the level of proteoglycans in cartilage matrix and the thickness of articular cartilage, with the elevated levels of Col II, p‐Akt and p‐S6 expression in a rat OA model, as demonstrated by histopathological and immunohistochemistry techniques. The data thus strongly suggest that berberine may ameliorate cartilage degeneration from OA by promoting cell survival and matrix production of chondrocytes, which was partly attributed to the activation of Akt in IL‐1β‐stimulated articular chondrocytes and in a rat OA model. The resultant chondroprotective effects indicate that berberine merits consideration as a therapeutic agent in OA.  相似文献   

12.
microRNA (miR) has been shown to be involved in the treatment of diseases such as osteoarthritis (OA). This study aims to investigate the role of miR-206 in regulating insulin-like growth factor-1 (IGF-1) in chondrocyte autophagy and apoptosis in an OA rat model via the phosphoinositide 3-kinase (P13K)/protein kinase B (AKT)-mechanistic target of rapamycin (mTOR) signaling pathway. Wistar rats were used to establish the OA rat model, followed by the observation of histopathological changes, Mankin score, and the detection of IGF-1-positive expression and tissue apoptosis. The underlying regulatory mechanisms of miR-206 were analyzed in concert with treatment by an miR-206 mimic, an miR-206 inhibitor, or small interfering RNA against IGF-1 in chondrocytes isolated from OA rats. Then, the expression of miR-206, IGF-1, and related factors in the signaling pathway, cell cycle, and apoptosis, as well as inflammatory factors, were determined. Subsequently, chondrocyte proliferation, cell cycle distribution, apoptosis, autophagy, and autolysosome were measured. OA articular cartilage tissue exhibited a higher Mankin score, promoted cell apoptotic rate, increased expression of IGF-1, Beclin1, light chain 3 (LC3), Unc-51-like autophagy activating kinase 1 (ULK1), autophagy-related 5 (Atg5), caspase-3, and Bax, yet exhibited decreased expression of miR-206, P13K, AKT, mTOR, and Bcl-2. Besides, miR-206 downregulated the expression of IGF-1 and activated the P13K/AKT signaling pathway. Moreover, miR-206 overexpression and IGF-1 silencing inhibited the interleukins levels (IL-6, IL-17, and IL-18), cell apoptotic rate, the formation of autolysosome, and cell autophagy while promoting the expression of IL-1β and cell proliferation. The findings from our study provide a basis for the efficient treatment of OA by investigating the inhibitory effects of miR-206 on autophagy and apoptosis of articular cartilage in OA via activating the IGF-1-mediated PI3K/AKT-mTOR signaling pathway.  相似文献   

13.
The use of tourniquet during total knee arthroplasty (TKA) can result in ischaemia/reperfusion injury (IRI). Of interest, microRNAs (miRs) are reported to be involved in various kinds of IRI due to their ability in modulating autophagy. Therefore, the study aimed to investigate the effect of miR‐153‐3p on autophagy in IRI in vitro and in vivo under sevoflurane preconditioning. In the in vitro model, chondrocytes from naive mice were treated with 0% FBS alone or in combination with sevoflurane. Additionally, in vivo assays were conducted in mouse models with tourniquet‐induced IRI after TKA under or without sevoflurane preconditioning. The pathological observation in vivo validated that sevoflurane preconditioning protected the knee joint against IRI. Moreover, miR‐153‐3p expression was diminished in chondrocytes of the in vitro model and in cartilage tissue of the in vivo model, but its expression was appreciably up‐regulated in the presence of sevoflurane preconditioning. Mechanistic study showed that miR‐153‐3p disrupted the interaction between Bcl‐2 and Beclin1 by targeting Bcl‐2, thereby facilitating autophagy in chondrocytes under sevoflurane preconditioning. Furthermore, the experiments in human chondrocytes also verified the protective effects of miR‐153‐3p against IRI were realized through inhibiting Bcl‐2. Collectively, miR‐153‐3p overexpression blocks the interaction between Bcl‐2 and Beclin1 via down‐regulation of Bcl‐2 to promote autophagy of chondrocytes, thus protecting knee joint against IRI after TKA under sevoflurane preconditioning.  相似文献   

14.
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that eventually leads to joint deformities and loss of joint function. Previous studies have demonstrated a close relationship between autophagy and the development of RA. Although autophagy and apoptosis are two different forms of programmed death, the relationship between them in relation to RA remains unclear. In this study, we explored the effect of autophagy on apoptosis of articular chondrocytes in vivo and in vitro. Adjuvant arthritis (AA) and acid‐induced primary articular chondrocyte apoptosis were used as in vivo and in vitro models, respectively. Articular chondrocyte autophagy and apoptosis were both observed dynamically in AA rat articular cartilage at different stages (15 days, 25 days and 35 days). Moreover, chondrocyte apoptosis and articular cartilage injury in AA rats were increased by the autophagy inhibitor 3‐methyladenine (3‐MA) and decreased by the autophagy activator rapamycin. In addition, pre‐treatment with 3‐MA increased acid‐induced chondrocyte apoptosis, while pre‐treatment with rapamycin reduced acid‐induced chondrocyte apoptosis in vitro. These results suggest that autophagy might be a potential target for the treatment of RA.  相似文献   

15.
Autophagy maintains cellular homoeostasis. The enhancement of autophagy in chondrocytes could prevent osteoarthritis (OA) progression in articular cartilage. Peroxisome proliferator‐activated receptor α (PPARα) activation may also protect articular chondrocytes against cartilage degradation in OA. However, whether the protective effect of activated PPARα is associated with autophagy induction in chondrocytes is not determined. In this study, we investigated the effect of PPARα activation by its agonist, WY14643, on the protein expression level of Aggrecan and ADAMTS5, and the protein expression level of autophagy biomarkers, including LC3B and P62, using Western blotting analysis in isolated mouse chondrocytes pre‐treated with lipopolysaccharides (LPS, mimicking OA chondrocytes) with or without the autophagy inhibitor chloroquine diphosphate salt. Furthermore, Akt and ERK phosphorylation was detected in LPS‐treated chondrocytes in response to WY14643. In addition, the effect of intra‐articularly injected WY14643 on articular cartilage in a mouse OA model established by the destabilization of the medial meniscus was assessed using the Osteoarthritis Research Society International (OARSI) histopathology assessment system, along with the detection of Aggrecan, ADAMTS5, LC3B and P62 protein levels using immunohistochemistry assay. The results indicated that PPARα activation by WY14643 promoted proteoglycan synthesis by autophagy enhancement in OA chondrocytes in vivo and in vitro concomitant with the elevation of Akt and ERK phosphorylation. Therefore, autophagy could contribute to the chondroprotection of PPARα activation by WY14643, with the implication that PPARα activation by WY14643 may be a potential approach for OA therapy.  相似文献   

16.
17.
18.
Osteoarthritis (OA) is a prevalent degenerative joint disease whose pathogenesis remains unclear. The research aims to investigate the roles of Circ_0136474/miR‐127‐5p/MMP‐13 axis in OA. Differentially expressed circRNAs and miRNAs in OA cartilage tissue were screened out and visualized by R project based on RNA‐seq data and microarray data respectively. qRT‐PCR was carried out for detection of relative expression levels of Circ_0136474, miR‐127‐5p, MMP‐13 and other inflammatory factors and Western blot analysis was conducted to detect the protein expression level of MMP‐13. CCK‐8 assay and flow cytometry were conducted to determine cell proliferation and cell apoptotic ability respectively. RNA‐fluorescence in situ hybridization (RNA‐FISH) experiments were conducted to confirm the immune‐localization of the Circ_0136474 and MMP‐13 in human tissues. Targeted relationships were predicted by bioinformatic analysis and verified by dual‐luciferase reporter assay. Our findings revealed that the expression levels of both Circ_0136474 and MMP‐13 in OA cartilage tissue were significantly higher than that in normal cartilage tissue. Circ_0136474 could suppress cell proliferation by facilitating MMP‐13 expression and suppressing miR‐127‐5p expression in OA. Overexpression of miR‐127‐5p negatively regulated MMP‐13 expression to enhance cell proliferation. Our study demonstrated that Circ_0136474 and MMP‐13 suppressed cell proliferation, while enhanced cell apoptosis by competitive binding to miR‐127‐5p in OA, which may well provide us with a new therapeutic strategy for osteoarthritis.  相似文献   

19.
The aim of this research is to explore the effect of miR‐200b‐3p targeting DNMT3A on the proliferation and apoptosis of osteoarthritis (OA) cartilage cells. Quantitative RT‐PCR was performed to analyse the expression of miR‐200b‐3p, DNMT3A, MMP1, MMP3, MMP9, MMP13 and COL II in normal and OA cartilage tissues. The dual‐luciferase reporter assay and Western blot assay were conducted to confirm the targeting relationship between miR‐200b‐3p and DNMT3A. We also constructed eukaryotic expression vector to overexpress miR‐200b‐3p and DNMT3A. We detected the expression level of MMPs and COL II in stable transfected cartilage cells using RT‐PCR and Western blot. Cell proliferation and apoptosis were evaluated using the MTS, pellet culture and Hoechst 33342 staining method. Finally, we explored the effect of miR‐200b‐3p targeting DNMT3A on the proliferation and apoptosis of OA cartilage cells. The results of RT‐PCR indicated that both miR‐200b‐3p and COL II were down‐regulated in OA cartilage tissues, while the expression of DNMT3A and MMPs was up‐regulated in OA cartilage tissues. The expressions of DNMT3A, MMPs and COL II detected by Western blot showed the same trend of the results of RT‐PCR. The dual‐luciferase reporter assay and Western blot assay confirmed the targeting relationship between miR‐200b‐3p and DNMT3A. In overexpressed miR‐200b‐3p cartilage cells, DNMT3A and MMPs were significantly down‐regulated, COL II was significantly up‐regulated, cell viability was enhanced and apoptosis rate was decreased (P < 0.05). In overexpressed DNM3T cartilage cells, MMPs were significantly up‐regulated, COL II was significantly down‐regulated, cell viability was weakened and apoptosis rate was increased (P < 0.05). MiR‐200b‐3p inhibited the secretion of MMPs, promoted the synthesis of COL II and enhanced the growth and proliferation of OA cartilage cells through inhibiting the expression of DNMT3A.  相似文献   

20.
NR4A3 is a member of nuclear receptor subfamily 4, which is an important regulator of cellular function and inflammation. In this study, high expression of NR4A3 in human osteoarthritis (OA) cartilage was firstly observed. To explore the relationship between NR4A3 and OA, we used a lentivirus overexpression system to simulate its high expression and study its role in OA. Additionally, siRNA‐mediated knockdown of NR4A3 was used to confirm the findings of overexpression experiments. The results showed the stimulatory effect of IL‐1β on cartilage matrix‐degrading enzyme expression such as MMP‐3, 9, INOS and COX‐2 was enhanced in NR4A3‐overexpressed chondrocytes and decreased in NR4A3‐knockdown chondrocytes at both mRNA and protein levels, while IL‐1β‐induced chondrocyte‐specific gene (collagen 2 and SOX‐9) degradation was only regulated by NR4A3 at protein level. Furthermore, overexpression of NR4A3 would also enhance EBSS‐induced chondrocytes apoptosis, while knockdown of NR4A3 decreased apoptotic level after EBSS treatment. A pathway study indicated that IL‐1β‐induced NF‐κB activation was enhanced by NR4A3 overexpression and reduced by NR4A3 knockdown. We suggest that NR4A3 plays a pro‐inflammatory role in the development of OA, and we also speculate that NR4A3 mainly regulates cartilage matrix‐degrading gene expression under inflammatory conditions via the NF‐κB pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号