首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recently, aberrant expression of miR‐876‐5p has been reported to participate in the progression of several human cancers. However, the expression and function of miR‐876‐5p in osteosarcoma (OS) are still unknown. Here, we found that the expression of miR‐876‐5p was significantly down‐regulated in OS tissues compared to para‐cancerous tissues. Clinical association analysis indicated that underexpression of miR‐876‐5p was positively correlated with advanced clinical stage and poor differentiation. More importantly, OS patients with low miR‐876‐5p level had a significant shorter overall survival compared to miR‐876‐5p high‐expressing patients. In addition, gain‐ and loss‐of‐function experiments demonstrated that miR‐876‐5p restoration suppressed whereas miR‐876‐5p knockdown promoted cell proliferation, migration and invasion in both U2OS and MG63 cells. In vivo studies revealed that miR‐876‐5p overexpression inhibited tumour growth of OS in mice. Mechanistically, miR‐876‐5p reduced c‐Met abundance in OS cells and inversely correlated c‐Met expression in OS tissues. Herein, c‐Met was recognized as a direct target of miR‐876‐5p using luciferase reporter assay. Notably, c‐Met restoration rescued miR‐876‐5p attenuated the proliferation, migration and invasion of OS cells. In conclusion, these findings indicate that miR‐876‐5p may be used as a potential therapeutic target and promising biomarker for the diagnosis and prognosis of OS.  相似文献   

3.
4.
The study was aimed to screen out miRNAs with differential expression in hepatocellular carcinoma (HCC), and to explore the influence of the expressions of these miRNAs and their target gene on HCC cell proliferation, invasion and apoptosis. MiRNAs with differential expression in HCC were screened out by microarray analysis. The common target gene of these miRNAs (miR‐139‐5p, miR‐940 and miR‐193a‐5p) was screened out by analysing the target genes profile (acquired from Targetscan) of the three miRNAs. Expression levels of miRNAs and SPOCK1 were determined by quantitative real time polymerase chain reaction (qRT‐PCR). The target relationships were verified by dual luciferase reporter gene assay and RNA pull‐down assay. Through 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide,thiazolyl blue tetrazolium bromide (MTT) and transwell assays and flow cytometry, HCC cell viability, invasion and apoptosis were determined. In vivo experiment was conducted in nude mice to investigate the influence of three miRNAs on tumour growth. Down‐regulation of miR‐139‐5p, miR‐940 and miR‐193a‐5p was found in HCC. Overexpression of these miRNAs suppressed HCC cell viability and invasion, promoted apoptosis and inhibited tumour growth. SPOCK1, the common target gene of miR‐139‐5p, miR‐940 and miR‐193a‐5p, was overexpressed in HCC. SPOCK1 overexpression promoted proliferation and invasion, and restrained apoptosis of HCC cells. MiR‐139‐5p, miR‐940 and miR‐193a‐5p inhibited HCC development through targeting SPOCK1.  相似文献   

5.
6.
7.
This work aimed to investigate miR‐93‐5p expression in tumor tissue and its in vitro effects in colorectal cancer (CRC) by targeting programmed death ligand‐1 (PD‐L1). MiR‐93‐5p and PD‐L1 expression was detected in CRC and adjacent normal tissues by quantitative real‐time polymerase chain reaction and immunohistochemistry. The correlation between miR‐93‐5p and PD‐L1 was validated by a dual‐luciferase reporter assay. HCT116 and SW480 cells were divided into blank, miR‐NC, miR‐93‐5p mimics, miR‐93‐5p inhibitor, PD‐L1 small interfering RNA (siRNA) and miR‐93‐5p inhibitor + PD‐L1 siRNA groups, and wound‐healing and transwell assays were performed to detect cell migration and invasion, respectively. Protein expression was measured by western blotting. The secretion of cytokines was detected in the CRC cell/T coculture models. MiR‐93‐5p was downregulated in CRC tissues with upregulated PD‐L1. In PD‐L1‐negative patients, miR‐93‐5p expression was increased compared with that in PD‐L1‐positive patients. MiR‐93‐5p and PD‐L1 expression levels were associated with the tumor differentiation, lymphatic metastasis, TNM, Duke's stage, and prognosis of CRC. PD‐L1 siRNA weakened the migration and invasion abilities via decreased expression of matrix metalloproteinase‐1 (MMP‐1), ‐2, and ‐9, and these effects were abolished by the miR‐93‐5p inhibitor. Additionally, anti‐PD‐L1 upregulated the expressions of interleukin‐2 (IL‐2), tumor necrosis factor‐α (TNF‐α), and interferon γ (IFN‐γ) in the coculture of T cells with CRC cells, but downregulated the expressions of IL‐1β, IL‐10, and TGF‐β. However, these changes were partially reversed by miR‐93‐5p inhibition. miR‐93‐5p is expected to be a novel target for CRC treatment since it decreases the migration and invasion, as well as the immune evasion, of CRC cells via targeting PD‐L1.  相似文献   

8.
9.
10.
Vein endothelial cells (VECs) constitute an important barrier for macromolecules and circulating cells from the blood to the tissues, stabilizing the colloid osmotic pressure of the blood, regulating the vascular tone, and rapidly changing the intercellular connection, and maintaining normal physiological function. Tight junction has been discovered as an important structural basis of intercellular connection and may play a key role in intercellular connection injuries or vascular diseases and selenium (Se) deficiency symptoms. Hence, we replicated the Se‐deficient broilers model and detected the specific microRNA in response to Se‐deficient vein by using quantitative real time‐PCR (qRT‐PCR) analysis. Also, we selected miR‐128‐1‐5p based on differential expression in vein tissue and confirmed its target gene cell adhesion molecule 1 (CADM1) by the dual luciferase reporter assay and qRT‐PCR in VECs. We made the ectopic miR‐128‐1‐5p expression for the purpose of validating its function on tight junction. The result showed that miR‐128‐1‐5p and CADM1 were involved in the ZO‐1‐mediated tight junction, increased paracellular permeability, and arrested cell cycle. We presumed that miR‐128‐1‐5p and Se deficiency might trigger tight junction. Interestingly, miR‐128‐1‐5p inhibitor and fasudil in part hinder the destruction of the intercellular structure caused by Se deficiency. The miR‐128‐1‐5p/CADM1/tight junction axis provides a new avenue toward understanding the mechanism of Se deficiency, revealing a novel regulation model of tight junction injury in vascular diseases.  相似文献   

11.
12.
13.
This study purposed to explore the correlation between miR‐129‐5p and TGIF2 and their impacts on glioma cell progression. Differentially expressed miRNA was screened through microarray analysis. MiR‐129‐5p expression levels in glioma tissues and cells were measured by qRT‐PCR. CCK‐8 assay, flow cytometer, transwell assay and wound‐healing assay were employed to detect cell proliferation, apoptosis and cycle, invasiveness and migration, respectively. Dual‐luciferase reporting assay was performed to confirm the targeted relationship between miR‐129‐5p and TGIF2. The effects of TGIF2 expression on cell biological functions were also investigated using the indicated methods. Tumour xenograft was applied to explore the impact of miR‐129‐5p on tumorigenesis in vivo. MiR‐129‐5p expression was down‐regulated in both glioma tissues and glioma cells, while TGIF2 expression was aberrantly higher than normal level. Dual‐luciferase reporter assay validated the targeting relation between miR‐129‐5p and TGIF2. Overexpression of miR‐129‐5p or down‐regulation of TGIF2 inhibited the proliferation, invasion and migration capacity of glioma cells U87 and U251, and meanwhile blocked the cell cycle as well as induced cell apoptosis. MiR‐129‐5p overexpression repressed the tumour development in vivo. MiR‐129‐5p and TGIF2 had opposite biological functions in glioma cells. MiR‐129‐5p could inhibit glioma cell progression by targeting TGIF2, shining light for the development of target treatment for glioma.  相似文献   

14.
The long intergenic non‐protein coding RNA regulator of reprogramming (lncRNA‐ROR) has been reported to play crucial regulatory roles in the pathogenesis and progression of multiple cancers. However, whether ROR is associated with the initiation and development of osteosarcoma (OS) remains unclear. Here, we found that ROR expression level was significantly up‐regulated in OS tissue samples compared to adjacent normal tissues, and the elevated ROR was closely correlated with advanced tumour‐node‐metastasis (TNM) stage and lymph node metastasis and poor overall survival rate. Functional assays showed that ROR knockdown suppressed the OS cell proliferation, colony formation, migration and invasion in vitro, and retarded tumour growth in vivo. In addition, miR‐206 was verified to be a target miRNA of ROR using bioinformatics online program and luciferase report assay. miR‐206 inhibition partially rescued the inhibitory effects on OS cells induced by ROR knockdown. In conclusion, these results suggested that ROR function as an oncogene in OS by sponging miR‐206 and might be a potential therapeutic target for patients with OS.  相似文献   

15.
MiR‐4732‐5p was previously found to be dysregulated in nipple discharge of breast cancer. However, the expression and function of miR‐4732‐5p in breast cancer remain largely unknown. Here, the expression of miR‐4732‐5p was detected using quantitative real‐time PCR in breast cancer tissues and cell lines. Cell proliferation, apoptosis, migration and invasion assays were performed to examine the effects of miR‐4732‐5p in breast cancer. In addition, mRNA sequencing, bioinformatics analysis, Western blot and luciferase assays were performed to identify the target of miR‐4732‐5p. Overall, miR‐4732‐5p was significantly down‐regulated in breast cancer tissues, especially in lymph node metastasis (LNM)‐negative tissues, compared with adjacent normal tissues. However, it was more highly expressed in LNM‐positive breast cancer tissues, compared with LNM‐negative ones. Expression of miR‐4732‐5p was positively correlated with lymph node metastasis, larger tumour size, advanced clinical stage, high Ki‐67 levels and poor prognosis. MiR‐4732‐5p promoted cell proliferation, migration and invasion in breast cancer. MiR‐4732‐5p directly targeted the 3′‐UTR of tetraspanin 13 (TSPAN13) and suppressed TSPAN13 expression at the mRNA and protein levels. These results suggested that miR‐4732‐5p may serve as a tumour suppressor in the initiation of breast cancer, but as a tumour promoter in breast cancer progression by targeting TSPAN13.  相似文献   

16.
17.
Heart failure preceded by pathological cardiac hypertrophy is a leading cause of death. Long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) was reported to inhibit cardiomyocytes apoptosis, but the role and underlying mechanism of SNHG1 in pathological cardiac hypertrophy have not yet been understood. This study was designed to investigate the role and molecular mechanism of SNHG1 in regulating cardiac hypertrophy. We found that SNHG1 was upregulated during cardiac hypertrophy both in vivo (transverse aortic constriction treatment) and in vitro (phenylephrine [PE] treatment). SNHG1 overexpression attenuated the cardiomyocytes hypertrophy induced by PE, while SNHG1 inhibition promoted hypertrophic response of cardiomyocytes. Furthermore, SNHG1 and high‐mobility group AT‐hook 1 (HMGA1) were confirmed to be targets of miR‐15a‐5p. SNHG1 promoted HMGA1 expression by sponging miR‐15a‐5p, eventually attenuating cardiomyocytes hypertrophy. There data revealed a novel protective mechanism of SNHG1 in cardiomyocytes hypertrophy. Thus, targeting of SNHG1‐related pathway may be therapeutically harnessed to treat cardiac hypertrophy.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号