首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Matrix metalloproteinases (MMPs), in particular MMP‐9, have been shown to be induced by cytokines, including TNF‐α and contributes to airway inflammation. However, the mechanisms underlying TNF‐α‐induced MMP‐9 expression in human A549 cells remain unclear. Here, we report that TNF‐α‐induced MMP‐9 gene expression was mediated through the TNFR1/TRAF2/PKCα‐dependent signaling pathways in A549 cells, determined by zymographic, RT‐PCR, and Western blotting analyses. TNF‐α‐induced MMP‐9 expression was reduced by pretreatment with a TNFR Ab. Furthermore, TNF‐α‐induced TNFR1 and TRAF2 complex formation was revealed by immunoprecipitation using an anti‐TNFR1 Ab followed by Western blot analysis against an anti‐TRAF2 or anti‐TNFR1 Ab. In addition, TNF‐α‐induced MMP‐9 expression was also reduced by pretreatment with the inhibitor of PKCα (Gö6983), c‐Src (PP1), EGFR (AG1478), or PI3K (LY294002) or transfection with siRNAs of PKCα, Src, EGFR, Akt, p65, p300, and c‐Jun. On the other hand, TNF‐α stimulated the phosphorylation of c‐Src, EGFR, Akt, JNK1/2, and c‐Jun, which were inhibited by pretreatment with Gö6983. We also showed that TNF‐α induced Akt translocation and the formation of an Akt/p65/p300 complex. Pretreatment with the inhibitor of JNK1/2 (SP600125) but not the inhibitor of MEK1/2 (U0126), p38 MAPK (SB202190), or PI3K (LY294002), markedly inhibited TNF‐α‐induced c‐Jun mRNA levels. Taken together, these data suggest that in A549 cells, TNF‐α induces MMP‐9 expression via the TNFR1/TRAF2/PKCα‐dependent JNK1/2/c‐Jun and c‐Src/EGFR/PI3K/Akt pathways. J. Cell. Physiol. 454–464, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Dedifferentiation, a process by which differentiated cells become mesenchymal‐like proliferating cells, is the first step in renal epithelium repair and occurs in vivo after acute kidney injury and in vitro in primary culture. However, the underlying mechanism remains poorly understood. In this report, we studied the signaling events that mediate dedifferentiation of proximal renal tubular cells (RPTC) in primary culture. RPTC dedifferentiation characterized by increased expression of vimentin concurrent with decreased expression of cytokeratin‐18 was observed at 24 h after the initial plating of freshly isolated proximal tubules and persisted for 72 h. At 96 h, RPTC started to redifferentiate as revealed by reciprocal expression of cytokeratin‐18 and vimentin and completed at 120 h. Phosphorylation levels of Src, epidermal growth factor receptor (EGFR), AKT (a target of phosphoinositide‐3‐kinase (PI3K)), and ERK1/2 were increased in the early time course of culture (<72 h). Inhibition of Src family kinases (SFKs) with PP1 blocked EGFR, AKT, and ERK1/2 phosphorylation, as well as RPTC dedifferentiation. Inhibition of EGFR with AG1478 also blocked AKT and ERK1/2 phosphorylation and RPTC dedifferentiation. Although inactivation of the PI3K/AKT pathway with LY294002 inhibited RPTC dedifferentiation, blocking the ERK1/2 pathway with U0126 did not show such an effect. Moreover, inhibition of SFKs, EGFR, PI3K/AKT, but not ERK1/2 pathways abrogated RPTC outgrowth and SFK inhibition decreased RPTC proliferation and migration. These findings demonstrate a critical role of SFKs in mediating RPTC dedifferentiation through activation of the EGFR/PI3K signaling pathway. J. Cell. Physiol. 227: 2138–2144, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
Glioblastomas (GBMs) are the most common of both benign and malignant primary brain tumours, in which the inflammatory and immunologic abnormalities are involved. Interleukin‐17A (IL‐17A) plays an important role in various inflammatory diseases and cancers. Several recent studies revealed that the expression of IL‐17A was overexpressed in human GBMs tissue. However, the accurate role of IL‐17A in GBMs remains unclear. In this study, we aimed to explore the effect of IL‐17A on cell migration and invasion of GBMs and the mechanism by which the effects occurred. We found that exogenous IL‐17A promoted significantly cell migration and invasion abilities in two GBMs cell lines (U87MG and U251) in a time‐dependent manner. In addition, the protein expressions of PI3K, Akt and MMP‐2/9 were increased in the GBMs cells challenged by IL‐17A. Furthermore, a tight junction protein ZO‐1 was down‐regulated but Twist and Bmi1 were up‐regulated. Treatment with a PI3K inhibitor (LY294002) significantly reduced the abilities of both migration and invasion in U87MG and U251 cells. LY294002 treatment also attenuated the IL‐17A causing increases of protein levels of PI3K, AKT, MMP‐2/9, Twist and the decreases of protein level of ZO‐1 in the U87MG and U251 cells. Taken together, we concluded that IL‐17A promotes the GBM cells migration and invasion via PI3K/AKT signalling pathway. IL‐17A and its related signalling pathways may be potential therapeutic targets for GBM.  相似文献   

4.
To investigate the potential regulation of sphingosine kinase 1 (SPHK1) on the migration, invasion, and matrix metalloproteinase (MMP) expression in human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). RA-FLS were transfected control siRNA or SPHK1 siRNA. The migration and invasion of unmanipulated control, control siRNA or SPHK1 siRNA- transfected RA-FLS in vitro were measured by the transwell system. The relative levels of SPHK1, PI3K, and AKT as well as AKT phosphorylation in RA-FLS were determined by Western blot. The levels of MMP-2/9 secreted by RA-FLS were detected by ELISA. Knockdown of SPHK1 significantly inhibited the spontaneous migration and invasion of RA-FLS, accompanied by significantly reduced levels of PI3K expression and AKT phosphorylation. Similarly, treatment with LY294002, an inhibitor of the PI3K/AKT pathway, inhibited the migration and invasion of RA-FLS. Knockdown of SPHK1 and treatment with the inhibitor synergistically inhibited the migration and invasion of RA-FLS, by further reducing the levels of PI3K expression and AKT phosphorylation. In addition, knockdown of SPHK1 or treatment with LY294002 inhibited the secretion of MMP-2 and MMP-9, and both synergistically reduced the production of MMP-2 and MMP-9 in RA-FLS in vitro. Knockdown of SPHK1 expression inhibits the PI3K/AKT activation, MMP-2 and MMP-9 expression, and human RA-FLS migration and invasion in vitro. Potentially, SPHK1 may be a novel therapeutic target for RA.  相似文献   

5.
Tumor malignancy is associated with several cellular properties including proliferation and ability to metastasize. Endothelin-1 (ET-1) the most potent vasoconstrictor plays a crucial role in migration and metastasis of human cancer cells. We found that treatment of human chondrosarcoma (JJ012 cells) with ET-1 increased migration and expression of matrix metalloproteinase (MMP)-13. ET-1-mediated cell migration and MMP-13 expression were reduced by pretreatment with inhibitors of focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), as well as the NF-κB inhibitor and the IκB protease inhibitor. In addition, ET-1 treatment induced phosphorylation of FAK, PI3K, AKT, and mTOR, and resulted in increased NF-κB-luciferase activity that was inhibited by a specific inhibitor of PI3K, Akt, mTOR, and NF-κB cascades. Taken together, these results suggest that ET-1 activated FAK/PI3K/AKT/mTOR, which in turn activated IKKα/β and NF-κB, resulting in increased MMP-13 expression and migration in human chondrosarcoma cells.  相似文献   

6.
In the present study, we demonstrated that Ang II provokes a transitory enhancement of focal adhesion kinase (FAK) and paxillin phosphorylation in human umbilical endothelial cells (HUVEC). Moreover, Ang II induces a time- and dose-dependent augmentation in cell migration, but does not affect HUVEC proliferation. The effect of Ang II on FAK and paxillin phosphorylation was markedly attenuated in cells pretreated with wortmannin and LY294002, indicating that phosphoinositide 3-kinase (PI3K) plays an important role in regulating FAK activation. Similar results were observed when HUVEC were pretreated with genistein, a non-selective tyrosine kinases inhibitor, or with the specific inhibitor PP2 for Src family kinases, demonstrating the involvement of protein tyrosine kinases, and particularly Src family of tyrosine kinases, in the downstream signalling pathway of Ang II receptors. Furthermore, FAK and paxillin phosphorylation was markedly blocked after treatment of HUVEC with AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) phosphorylation. Pretreatment of cells with inhibitors of PI3K, Src family tyrosine kinases, and EGFR also decreased HUVEC migration. In conclusion, these results suggest that Ang II mediates an increase in FAK and paxillin phosphorylation and induces HUVEC migration through signal transduction pathways dependent on PI3K and Src tyrosine kinase activation and EGFR transactivation.  相似文献   

7.
Using a Transwell chamber as migration assay for mouse primordial germ cells (PGCs), we show here that these cells posses directional migration in the absence of somatic cell and defined matrix support and in response to a Kit ligand (KL) gradient or medium conditioned by Aorta/Gonad/Mesonephros and gonadal ridges. Other putative PGC chemoattractants such as SDF1 and TGFbeta did not exert any attractive action on PGCs. The chemoattractant activity of KL and conditioned medium was also evidenced by their ability to stimulate actin reorganization in PGCs. In the aim to identify downstream signaling pathways governing KL chemoattraction on PGCs, we demonstrated that in such cells KL rapidly (5 min) increased autophosphorylation of its receptor c-Kit and caused phosphorylation of the serine-threonine kinase AKT through the action of PI3K. 740Y-P peptide, a direct activator of PI3 kinase, stimulated PGC migration at levels similar to those elicited by KL. LY294002 (a specific inhibitor of PI3K) abolished KL-dependent PGC migration or the chemoattractant activity of the conditioned medium and inhibited AKT phosphorylation; Src kinase inhibitors PP2 and SU6656, caused significant reduction of the KL-dependent PGC migration and AKT phosphorylation, while U0126, a selective inhibitor of the MEK/ERK protein kinase cascade, reduced PGC migration and AKT phosphorylation at lesser extent. SU6656 completely abolished the chemoattractant activity of the conditioned medium. Finally, SB202190 (a p38 inhibitor) and rapamycin (mTOR inhibitor) did not affect PGC migration. In addition, to demonstrate that somatic cells are not essential for PGC motility and directional migration, we evidenced a novel role for KL as PGC chemoattractant and for PI3K/AKT and Src kinase, as players involved in the activation of the PGC migratory machinery and likely important for their directional movement towards the gonadal ridges.  相似文献   

8.
9.
Herein, we investigated the survival roles of Fak, Src, MEK/Erk, and PI3‐K/Akt‐1 in intestinal epithelial cancer cells (HCT116, HT29, and T84), in comparison to undifferentiated and differentiated intestinal epithelial cells (IECs). We report that: (1) cancer cells display striking anoikis resistance, as opposed to undifferentiated/differentiated IECs; (2) under anoikis conditions and consequent Fak down‐activation, cancer cells nevertheless exhibit sustained Fak–Src interactions and Src/MEK/Erk activation, unlike undifferentiated/differentiated IECs; however, HCT116 and HT29 cells exhibit a PI3‐K/Akt‐1 down‐activation, as undifferentiated/differentiated IECs, whereas T84 cells do not; (3) cancer cells require MEK/Erk for survival, as differentiated (but not undifferentiated) IECs; however, T84 cells do not require Fak and HCT116 cells do not require PI3‐K/Akt‐1, in contrast to the other cells studied; (4) Src acts as a cornerstone in Fak‐mediated signaling to MEK/Erk and PI3‐K/Akt‐1 in T84 cells, as in undifferentiated IECs, whereas PI3‐K/Akt‐1 is Src‐independent in HCT116, HT29 cells, as in differentiated IECs; and (5) EGFR activity inhibition abrogates anoikis resistance in cancer cells through a loss of Fak–Src interactions and down‐activation of Src/MEK/Erk (T84, HCT116, HT29 cells) and PI3‐K/Akt‐1 (T84 cells). Hence, despite distinctions in signaling behavior not necessarily related to undifferentiated or differentiated IECs, intestinal epithelial cancer cells commonly display an EGFR‐mediated sustained activation of Src under anoikis conditions. Furthermore, such sustained Src activation confers anoikis resistance at least in part through a consequent sustenance of Fak–Src interactions and MEK/Erk activation, thus not only overriding Fak‐mediated signaling to MEK/Erk and/or PI3‐K/Akt‐1, but also the requirement of Fak and/or PI3‐K/Akt‐1 for survival. J. Cell. Biochem. 107: 639–654, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
11.
Intervertebral disc degeneration (IDD) is induced by multiple factors including increased apoptosis, decreased survival, and reduced extracellular matrix (ECM) synthesis in the nucleus pulposus (NP) cells. The tumor suppressor phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is the only known lipid phosphatase counteracting the PI3K/AKT pathway. Loss of PTEN leads to activated PI3K/AKT signaling, which plays a key role in a variety of cancers. However, the role of PTEN/PI3K/AKT signaling nexus in IDD remains unknown. Here, we report that PTEN is overexpressed in degenerative NP, which correlates with inactivated AKT. Using the PTEN knockdown approach by lentivirus‐mediated short interfering RNA gene transfer technique, we report that PTEN decreases survival but induces apoptosis and senescence of NP cells. PTEN also inhibits expression and production of ECM components including collagen II, aggrecan, and proteoglycan. Furthermore, PTEN modulates the expression of ECM regulatory molecules SOX‐9 and matrix metalloproteinase‐3 (MMP‐3). Using small‐molecule AKT inhibitor GDC‐0068, we confirm that PTEN regulates NP cell behaviors through its direct targeting of PI3K/AKT. These findings demonstrate for the first time that PTEN/PI3K/AKT signaling axis plays an important role in the pathogenesis of IDD. Targeting PTEN using gene therapy may represent a promising therapeutic approach against disc degenerative diseases.  相似文献   

12.
Abstract

To investigate the effect of microRNA 21 (miR-21) on hepatic stellate cells (HSCs) proliferation and apoptosis, and further to study its potential mechanisms. LX-2 cells were divided into miR-21 mimic group (Mimic), miR-21 mimic negative control group (NM), miR-21 inhibitor group (Inhibitor), miR-21 inhibitor negative control group (NC), and blank control group (Control). The cell proliferation was detected by CCK-8 assay and the cell migration and invasion were detected by scratch and transwell assay. Cell cycle and apoptosis were detected by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β1 were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation, apoptosis, and phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway related genes and proteins were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. The cells proliferation, migration, and invasion were promoted in Mimic group. The levels of IL-6, TNF-α, and TGF-β1 were increased after miR-21 administration. The expression of α-smooth muscle actin (SMA) and collagen 1 (Colla1) were increased, while Bax/B-cell lymphoma (Bcl)-2 ratio and programed cell death 4 (PDCD4) were reduced after miR?21 treatment. Meanwhile, the mRNA and protein expression of PTEN were reduced and PI3K/AKT pathway been promoted. Our study demonstrated that miR-21 could promote proliferation and inhibit apoptosis of HSCs, and its mechanism may be related to PTEN/PI3K/AKT pathway.  相似文献   

13.
Src and the mammalian target of rapamycin (mTOR) signaling are commonly activated in non-small cell lung cancer (NSCLC) and hence potential targets for chemotherapy. Although the combined use of Src inhibitor Dasatinib with other chemotherapeutic agents has shown superior efficacy for cancer treatment, the mechanisms that lead to enhanced sensitivity of Dasatinib are not completely understood. In this study, we found that Rapamycin dramatically enhanced Dasatinib-induced cell growth inhibition and cell cycle G1 arrest in human lung adenocarcinoma A549 cells without affecting apoptosis. The synergistic effects were consistently correlated with the up-regulation of cyclin-dependent kinases inhibitor proteins, including p16, p19, p21, and p27, as well as the repression of Cdk4 expression and nuclear translocation. Mechanistic investigations demonstrated that FoxO1/FoxO3a and p70S6K/4E-BP1, the molecules at downstream of Src-PI3K-Akt and mTOR signaling, were significantly suppressed by the combined use of Dasatinib and Rapamycin. Restraining Src and mTOR with small interfering RNA in A549 cells further confirmed that the Src/PI3K/mTOR Pathway played a crucial role in enhancing the anticancer effect of Dasatinib. In addition, this finding was also validated by a series of assays using another two NSCLC cell lines, NCI-H1706 and NCI-H460. Conclusively, our results suggested that the combinatory application of Src and mTOR inhibitors might be a promising therapeutic strategy for NSCLC treatment.  相似文献   

14.
Dasatinib is an inhibitor of Src that has anti-tumour effects on many haematological and solid cancers. However, the anti-tumour effects of dasatinib on human oral cancers remain unclear. In this study, we investigated the effects of dasatinib on different types of human oral cancer cells: the non-tumorigenic YD-8 and YD-38 and the tumorigenic YD-10B and HSC-3 cells. Strikingly, dasatinib at 10 µM strongly suppressed the growth and induced apoptosis of YD-38 cells and inhibited the phosphorylation of Src, EGFR, STAT-3, STAT-5, PKB and ERK-1/2. In contrast, knockdown of Src blocked the phosphorylation of EGFR, STAT-5, PKB and ERK-1/2, but not STAT-3, in YD-38 cells. Dasatinib induced activation of the intrinsic caspase pathway, which was inhibited by z-VAD-fmk, a pan-caspase inhibitor. Dasatinib also decreased Mcl-1 expression and S6 phosphorylation while increased GRP78 expression and eIF-2α phosphorylation in YD-38 cells. In addition, to its direct effects on YD-38 cells, dasatinib also exhibited anti-angiogenic properties. Dasatinib-treated YD-38 or HUVEC showed reduced HIF-1α expression and stability. Dasatinib alone or conditioned media from dasatinib-treated YD-38 cells inhibited HUVEC tube formation on Matrigel without affecting HUVEC viability. Importantly, dasatinib's anti-growth, anti-angiogenic and pro-apoptotic effects were additionally seen in tumorigenic HSC-3 cells. Together, these results demonstrate that dasatinib has strong anti-growth, anti-angiogenic and pro-apoptotic effects on human oral cancer cells, which are mediated through the regulation of multiple targets, including Src, EGFR, STAT-3, STAT-5, PKB, ERK-1/2, S6, eIF-2α, GRP78, caspase-9/3, Mcl-1 and HIF-1α.  相似文献   

15.
16.
The hepatocyte growth factor (HGF)/c‐Met signalling pathway is deregulated in most cancers and associated with a poor prognosis in breast cancer. Cardiotoxin III (CTX III), a basic polypeptide isolated from Naja naja atra venom, has been shown to exhibit anticancer activity. In this study, we use HGF as an invasive inducer to investigate the effect of CTX III on MDA‐MB‐231 cells. When cells were treated with non‐toxic doses of CTX III, CTX III inhibited the HGF‐promoted cell migration and invasion. CTX III significantly suppressed the HGF‐induced c‐Met phosphorylation and downstream activation of phosphatidylinositol 3‐kinase (PI3k)/Akt and extracellular signal‐regulated kinase (ERK) 1/2. Additionally, CTX III similar to wortmannin (a PI3K inhibitor) and U0126 (an upstream kinase regulating ERK1/2 inhibitor) attenuated cell migration and invasion induced by HGF. This effect was paralleled by a significant reduction in phosphorylation of IκBα kinase and IκBα and nuclear translocation of nuclear factor κB (NF‐κB) as well as a reduction of matrix metalloproteinase‐9 (MMP‐9) activity. Furthermore, the c‐Met inhibitor PHA665752 inhibited HGF‐induced MMP‐9 expression, cell migration and invasion, as well as the activation of ERK1/2 and PI3K/Akt, suggesting that ERK1/2 and PI3K/Akt activation occurs downstream of c‐Met activation. Taken together, these findings suggest that CTX III inhibits the HGF‐induced invasion and migration of MDA‐MB‐231 cells via HGF/c‐Met‐dependent PI3K/Akt, ERK1/2 and NF‐κB signalling pathways, leading to the downregulation of MMP‐9 expression. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Proximal events in signaling by plasma membrane estrogen receptors   总被引:18,自引:0,他引:18  
Estradiol (E2) rapidly stimulates signal transduction from plasma membrane estrogen receptors (ER) that are G protein-coupled. This is reported to occur through the transactivation of the epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor, similar to other G protein-coupled receptors. Here, we define the signaling events that result in EGFR and ERK activation. E2-stimulated ERK required ER in breast cancer and endothelial cells and was substantially prevented by expression of a dominant negative EGFR or by tyrphostin AG1478, a specific inhibitor for EGFR tyrosine kinase activity. Transactivation/phosphorylation of EGFR by E2 was dependent on the rapid liberation of heparin-binding EGF (HB-EGF) from cultured MCF-7 cells and was blocked by antibodies to this ligand for EGFR. Expression of dominant negative mini-genes for Galpha(q) and Galpha(i) blocked E2-induced, EGFR-dependent ERK activation, and Gbetagamma also contributed. G protein activation led to activation of matrix metalloproteinases (MMP)-2 and -9. This resulted from Src-induced MMP activation, implicated using PP2 (Src family kinase inhibitor) or the expression of a dominant negative Src protein. Antisense oligonucleotides to MMP-2 and MMP-9 or ICI 182780 (ER antagonist) each prevented E2-induced HB-EGF liberation and ERK activation. E2 also induced AKT up-regulation in MCF-7 cells and p38beta MAP kinase activity in endothelial cells, blocked by an MMP inhibitor, GM6001, and tyrphostin AG1478. Targeting of only the E domain of ERalpha to the plasma membrane resulted in MMP activation and EGFR transactivation. Thus, specific G proteins mediate the ability of E2 to activate MMP-2 and MMP-9 via Src. This leads to HB-EGF transactivation of EGFR and signaling to multiple kinase cascades in several target cells for E2. The E domain is sufficient to enact these events, defining additional details of the important cross-talk between membrane ER and EGFR in breast cancer.  相似文献   

18.
Acid‐sensing ion channel 1a (ASIC1a) allows Na+ and Ca2+ flow into cells. It is expressed during inflammation, in tumour and ischaemic tissue, in the central nervous system and non‐neuronal injury environments. Endoplasmic reticulum stress (ERS) is caused by the accumulation of misfolded proteins that interferes with intracellular calcium homoeostasis. Our recent reports showed ASIC1a and ERS are involved in liver fibrosis progression, particularly in hepatic stellate cell (HSC) activation. In this study, we investigated the roles of ASIC1a and ERS in activated HSC. We found that ASIC1a and ERS‐related proteins were up‐regulated in carbon tetrachloride (CCl4)‐induced fibrotic mouse liver tissues, and in patient liver tissues with hepatocellular carcinoma with severe liver fibrosis. The results show silencing ASIC1a reduced the expression of ERS‐related biomarkers GRP78, Caspase12 and IREI‐XBP1. And, ERS inhibition by 4‐PBA down‐regulated the high expression of ASIC1a induced by PDGF, suggesting an interactive relationship. In PDGF‐induced HSCs, ASIC1a was activated and migrated to the cell membrane, leading to extracellular calcium influx and ERS, which was mediated by PI3K/AKT pathway. Our work shows PDGF‐activated ASIC1a via the PI3K/AKT pathway, induced ERS and promoted liver fibrosis progression.  相似文献   

19.
Following a fibrogenic stimulus, the hepatic stellate cell (HSC) undergoes a complex activation process associated with increased cell proliferation and excess deposition of type I collagen. The focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway is activated by platelet-derived growth factor (PDGF) in several cell types. We investigated the role of the FAK-PI3K-Akt pathway in HSC activation. Inhibition of FAK activity blocked HSC migration, cell attachment, and PDGF-induced PI3K and Akt activation. Both serum- and PDGF-induced Akt phosphorylation was inhibited by LY294002, an inhibitor of PI3K. A constitutively active form of Akt stimulated HSC proliferation in serum-starved HSCs, whereas LY294002 and dominant-negative forms of Akt and FAK inhibited PDGF-induced proliferation. Transforming growth factor-beta, an inhibitor of HSC proliferation, did not block PDGF-induced Akt phosphorylation, suggesting that transforming growth factor-beta mediates its antiproliferative effect downstream of Akt. Expression of type I collagen protein and alpha1(I) collagen mRNA was increased by Akt activation and inhibited when PI3K activity was blocked. Therefore, FAK is important for HSC migration, cell attachment, and PDGF-induced cell proliferation. PI3K is positioned downstream of FAK. Signals for HSC proliferation are transduced through FAK, PI3K, and Akt. Finally, expression of type I collagen is regulated by the PI3K-Akt signaling pathway.  相似文献   

20.
CCL5 (previously called RANTES) is in the CC‐chemokine family and plays a crucial role in the migration and metastasis of human cancer cells. On the other hand, the effect of CCL5 is mediated via CCR receptor. RT‐PCR and flow cytometry studies demonstrated CCR5 but not CCR1 and CCR3 mRNA in oral cancer cell lines, especially higher in those with high invasiveness (SCC4) as compared with lower levels in HSC3 cells and SCC9 cells. Stimulation of oral cancer cells with CCL5 directly increased the migration and metalloproteinase‐9 (MMP‐9) production. MMP‐9 small interfering RNA inhibited the CCL5‐induced MMP‐9 expression and thereby significantly inhibited the CCL5‐induced cell migration. Activations of phospholipase C (PLC), protein kinase Cδ (PKCδ), and NF‐κB pathways after CCL5 treatment was demonstrated, and CCL5‐induced expression of MMP‐9 and migration activity was inhibited by the specific inhibitor of PLC, PKCδ, and NF‐κB cascades. In addition, migration‐prone sublines demonstrate that cells with increasing migration ability had more expression of MMP‐9, CCL5, and CCR5. Taken together, these results indicate that CCL5/CCR5 axis enhanced migration of oral cancer cells through the increase of MMP‐9 production. J. Cell. Physiol. 220: 418–426, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号