首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The egg's blocks to polyspermy (fertilization of an egg by more than one sperm) were originally identified in marine and aquatic species with external fertilization, but polyspermy matters in mammalian reproduction too. Embryonic triploidy is a noteworthy event associated with pregnancy complications and loss. Polyspermy is a major cause of triploidy with up to 80% of triploid conceptuses being the result of dispermic fertilization. The mammalian female reproductive tract regulates the number of sperm that reach the site of fertilization, but mammals also utilize egg‐based blocks to polyspermy. The egg‐based blocks occur on the mammalian egg coat (the zona pellucida) and the egg plasma membrane, with apparent variation between different mammalian species regarding the extent to which one or both are used. The zona pellucida block to polyspermy has some similarities to the slow block in water‐dwelling species, but the mammalian membrane block to polyspermy differs substantially from the fast electrical block that has been characterized in marine and aquatic species. This review discusses what is known about the incidence of polyspermy in mammals and about the mammalian membrane block to polyspermy, as well as notes some lesser‐characterized potential mechanisms contributing to polyspermy prevention in mammals.  相似文献   

2.
In 27% DeBoer's saline (DBS), which yields maximum fertility rates, Xenopus eggs fertilized in vitro are monospermic, regardless of sperm concentration. One block to polyspermy (the “slow” block), described previously, occurs at the fertilization envelope that is elevated in response to the cortical reaction. This paper describes properties of an earlier, “fast” block at the plasma membrane and evaluates the functional significance of the two blocks at physiological sperm concentrations in natural mating conditions. Unfertilized eggs have a resting membrane potential of ?19 mV in 27% DBS. Fertilization triggers a rapid depolarization to +8 mV (the fertilization potential, FP); the potential remains positive for ca. 15 min. Activation of eggs with the ionophore, A23187, produces a slower but similar depolarization (the activation potential, AP). As in other amphibian eggs, the FP appears to result from a net efflux of Cl?, since the peak of the FP (or the AP in ionophore-activated eggs) decreases as the concentration of chloride salts in the medium is increased. In 67% DBS no FP or AP is observed; eggs fertilized in 67% DBS become polyspermic and average 2 sperm entry sites per egg. In the 5–37 mM range, I? and Br?, but not F?, are more effective than Cl? in producing polyspermy. In 20 mM NaI the plasma membrane hyperpolarizes in response to sperm or ionophore; 100% levels of polyspermy and an average of 14 sperm entry sites per egg are observed. NaI does not inhibit or retard elevation of the fertilization envelope; the cortical reaction and fertilization envelope are normal in transmission electron micrographs. In 67% DBS, which also inhibits the fast block, the slow block was estimated to become functional 6–8 min after insemination. Eggs fertilized by natural mating in 20 mM NaI exhibit polyspermy levels of 50–90% and average 5 sperm entry sites per egg. Since eggs become polyspermic when fertilized by natural mating under conditions that inhibit the fast, but not the slow, block to polyspermy, we conclude that the fast block is essential to the prevention of polyspermy at the sperm concentrations normally encountered by the egg.  相似文献   

3.
A sodium-dependent, fast block to polyspermy occurs in eggs of fucoid algae   总被引:3,自引:0,他引:3  
More than 70% of Pelvetia fastigiata eggs and about 15% of Fucus distichus eggs become polyspermic when fertilized at natural sperm concentrations in a low-sodium (2.5 mM Na+, 450 mM N-methyl glucamine) artificial seawater. Natural levels of polyspermy are 1-3% for both species. Polyspermic eggs germinate and respond to photopolarization, but do not develop beyond an abnormal, "stumpy," four-cell stage. They die within 1-1.5 weeks. The sodium-dependent block is a fast block, and it is replaced by a second block (probably cell wall formation) no later than 9 min (Pelvetia) after eggs are shed. The sodium-dependent block in Pelvetia is very efficient; when external sodium is raised to only 47.5 mM, the level of polyspermy drops to about 25%. These results are compared with data on marine invertebrates in the context of factors such as the sperm/egg concentration at fertilization and natural, osmotic (salinity) stress.  相似文献   

4.
Previous work has established that the polyspermy block in Urechis acts at the level of sperm-egg membrane fusion. (J. Exp. Zool. 196:105). Present results indicate that during the first 5--10 min after insemination the block is mediated by a positive shift in membrane potential (the fertilization potential) elicited by the penetrating sperm, since holding the membrane potential of the unfertilized egg positive by passing current reduces the probability of sperm entry, while progressively reducing the amplitude of the fertilization potential by decreasing external Na+ progressively enhances multiple sperm penetrations. Also, a normal fertilization potential is correlated with a polyspermy block even under conditions (pH 7) in which eggs do not develop. We have investigated the mechanism of the electrical polyspermy block by quantifying the relationship between sperm incorporation, membrane potential and ion fluxes. Results indicate that the polyspermy block is mediated by the electrial change per se and not by the associated fluxes of Na+, Ca++, and H+.  相似文献   

5.
Fertilization triggers initiation of development and establishment of blocks on the egg coat and plasma membrane to prevent fertilization by multiple sperm (polyspermy). The mechanism(s) by which mammalian eggs establish the membrane block to polyspermy is largely unknown. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) appears to be the key regulator of several egg activation events (completion of meiosis, progression to embryonic interphase, recruitment of maternal mRNAs). Since sperm-induced increases in cytosolic Ca(2+) play a role in establishment of the membrane block to polyspermy in mouse eggs, we hypothesized that CaMKII was a Ca(2+)-dependent effector leading to this change in egg membrane function. To test this hypothesis, we modulated CaMKII activity in two ways: activating eggs parthenogenetically by introducing constitutively active CaMKIIalpha (CA-CaMKII) into unfertilized eggs, and inhibiting endogenous CaMKII in fertilized eggs with myristoylated autocamtide 2-related inhibitory peptide (myrAIP). We find that eggs treated with myrAIP establish a less effective membrane block to polyspermy than do control eggs, but that CA-CaMKII is not sufficient for membrane block establishment, despite the fact that CA-CaMKII-activated eggs undergo other egg activation events. This suggests that: (1) CaMKII activity contributes to the membrane block, but this not faithfully mimicked by CA-CaMKII and furthermore, other pathways, in addition to those activated by Ca(2+) and CaMKII, also participate in membrane block establishment; (2) CA-CaMKII has a range of effects as a parthenogenetic trigger of egg activation (high levels of cell cycle resumption, modest levels of cortical granule exocytosis, and no membrane block establishment).  相似文献   

6.
In this report, unpublished and recent findings concerning the structure and function of the ascidian egg coat are compiled in context with fertilization. In the initial stage of ascidian fertilization, sperm interact with a complex egg investment that consists of a layer of follicle cells attached to an acellular vitelline coat. Increasing evidence exists that ascidian sperm are activated at their encounter with the follicle cells. The molecular basis of sperm-follicle cell interactions is discussed in context with sperm binding, membrane proteins and sperm bound glycosidase. The model that suggests a block to polyspermy established by glycosidase released from the follicle cells on fertilization is evaluated and compared with assured facts. Although a number of questions remain to be answered, our recent findings that a cloned beta-hexosaminidase from P. mammillata binds exclusively to the follicle cells of unfertilized but not fertilized eggs, indicates that the follicle cells participate in the block to polyspermy. A dual function, mediating sperm activation and a block to polyspermy attributes to the ascidian follicle cells a key position in fertilization.  相似文献   

7.
The mechanisms responsible for the plasma membrane associated block to polyspermy in mouse eggs were studied. Reinsemination experiments using zona-free eggs indicated that, after fertilization, the egg plasma membrane is altered such that sperm binding to the egg plasma membrane is blocked, except in the region of the second polar body. Activation of the egg with either ethanol or strontium chloride did not result in a block to polyspermic penetration, as artificially activated eggs displayed identical penetration levels as to nonactivated control eggs. The penetrability of activated eggs was not altered by the presence or absence of the zona pellucida during activation. Lectin staining for egg cortical granule material indicated that activation did cause cortical granule exocytosis; however, activated eggs remained penetrable. These data support the following conclusions: (1) an alteration in the ability of the egg plasma membrane to allow sperm adherence accounts for the block to polyspermy; (2) establishment of the plasma membrane block to polyspermy is sperm dependent, since artificial egg activation does not result in a block response; (3) the contents of the egg's cortical granules do not play a role in the establishment of the plasmalemma block response. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Developmental failure caused by excess sperm (polyspermy) is thought to be an important mechanism driving the evolution of gamete-recognition proteins, reproductive isolation, and speciation in marine organisms. However, these theories assume that there is heritable variation in the susceptibility to polyspermy and that this variation is related to the overall affinity between sperm and eggs. These assumptions have not been critically examined. We investigated the relationship between ease of fertilization and susceptibility to polyspermy within and among three congeneric sea urchins. The results from laboratory studies indicate that, both within and among species, individuals and species that produce eggs capable of fertilization at relatively low sperm concentrations are more susceptible to polyspermy, whereas individuals and species producing eggs that require higher concentrations of sperm to be fertilized are more resistant to polyspermy. This relationship sets the stage for selection on gamete traits that depend on sperm availability and for sexual conflict that can influence the evolution of gamete-recognition proteins and eventually lead to reproductive isolation.  相似文献   

9.
Jellyfish eggs neither undergo apparent cortical reaction nor show any significant change in the membrane potential at fertilization, but nevertheless show monospermy. Utilizing the perfectly transparent eggs of the hydrozoan jellyfish Cytaeis uchidae, here we show that the polyspermy block is accomplished via a novel mechanism: a collaboration between Ca2+ and mitogen-activated protein kinase (MAPK). In Cytaeis, adhesion of a sperm to the animal pole surface of an egg was immediately followed by sperm–egg fusion and initiation of an intracellular Ca2+ rise from this site. The elevated Ca2+ levels lasted for several minutes following the sperm–egg fusion. The Ca2+ rise proved to be necessary and sufficient for a polyspermy block, as inhibiting a Ca2+ rise with EGTA promoted polyspermy, and conversely, triggering a Ca2+ rise by inositol 1,4,5-trisphosphate (IP3) or excess K+ immediately abolished the egg’s capacity for sperm–egg fusion. A Ca2+ rise at fertilization or by artificial stimulations evoked dephosphorylation of MAPK in eggs. The eggs in which phosphorylated MAPK was maintained by injection of mRNA for MAPK kinase kinase (Mos), like intact eggs, exhibited a Ca2+ rise at fertilization or by IP3 injection, and shut down the subsequent sperm–egg fusion. However, the Mos-expressing eggs became capable of accepting sperm following the arrest of Ca2+ rise. In contrast, addition of inhibitors of MAPK kinase (MEK) to unfertilized eggs caused MAPK dephosphorylation without elevating Ca2+ levels, and prevented sperm–egg fusion. Rephosphorylation of MAPK by injecting Mos mRNA after fertilization recovered sperm attraction, which is known to be another MAPK-dependent event, but did not permit subsequent sperm–egg fusion. Thus, it is possible that MAPK dephosphorylation irreversibly blocks sperm–egg fusion and reversibly suppresses sperm attraction. Collectively, our data suggest that both the fast and late mechanisms dependent on Ca2+ and MAPK, respectively, ensure a polyspermy block in jellyfish eggs.  相似文献   

10.
The fast block against polyspermy in fucoid algae is an electrical block   总被引:3,自引:0,他引:3  
Fertilization potentials in Pelvetia fastigiata, Fucus vesiculosus, and Fucus ceranoides were studied to examine whether eggs of fucoid algae have an electrical block against polyspermy. The resting potential of eggs of all species was about -60 mV, depolarizing, respectively, to -24 +/- 5 mV (SD, n = 9) for 7.5 +/- 2.1 (n = 8) min, -26 +/- 5 (n = 9) mV for 6.4 +/- 2.3 (n = 9) min, and -24 +/- 6 (n = 5) mV for 6.7 +/- 1.9 (n = 4) min. The depolarization was slower, and the fertilization potential was about 10 mV more negative in eggs of both F. vesiculosus and Pelvetia fertilized in 45-mM Na+ ASW; many of these eggs were polyspermic. Steady current was passed through unfertilized eggs of F. vesiculosus prior to insemination to test the potential dependence of fertilization. Eggs (n = 10) bound sperm at all potentials tested (-45 to -23 mV), but fertilization was prevented if eggs were held at potentials more positive than -45 to -37 mV. Eggs underwent a second depolarization if artificially hyperpolarized to potentials more negative than -50 mV immediately after the rise of a normal fertilization potential. Thus, fucoid eggs have an electrical fast block against polyspermy. Only in F. ceranoides does the formation of the cell wall after fertilization appear to be fast enough (i.e., 3-6 min postfertilization versus at 10-15 min in F. vesiculosus and P. fastigiata) to replace the fertilization potential as a polyspermy block. Nonfertilizing fucoid sperm swim away from the egg surface by 1-3 min after rise of the fertilization potential. This suggests that there is another "intermediate block" against polyspermy.  相似文献   

11.
One sperm fusing with one egg is requisite for successful fertilization; additional sperm fusions are lethal to the embryo. Because sperm usually outnumber eggs, evolution has selected for mechanisms that prevent this polyspermy by immediately modifying the egg extracellular matrix. We focus here on the contribution of cortical granule contents in the sea urchin block to polyspermy to begin to understand how well this process is conserved. We identified each of the major constituents of the fertilization envelope in two species of seaurchins, Strongylocentrotus purpuratus and Lytechinus variegatus, that diverged 30 to 50 million years ago. Our results show that the five major structural components of the fertilization envelope, derived from the egg cortical granules, are semiconserved. Most of these orthologs share sequence identity and encode multiple low-density lipoprotein receptor type A repeats or CUB domains but at least two contain radically different carboxy-terminal repeats. Using a new association assay, we also show that these major structural components are functionally conserved during fertilization envelope construction. Thus, it seems that this population of female reproductive proteins has retained functional motifs while gaining significant sequence diversity-two opposing paths that may reflect cooperativity among the proteins that compose the fertilization envelope.  相似文献   

12.
Y Iwao 《Developmental biology》1989,134(2):438-445
At fertilization, the egg of the primitive urodele, Hynobius nebulosus, produced a fertilization potential which rose from -12 to +47 mV. A similar activation potential was elicited by pricking with a needle, by applying A23187, or by electric shock. The potential change was mediated by an increased permeability to Cl-. Clamping the egg's membrane potential at +40 mV blocked fertilization, while clamping at +20 mV induced polyspermy. These results indicated the occurrence of an electrical polyspermy block, typical of anurans, but atypical of urodeles. Furthermore, Hynobius eggs fertilized by natural mating incorporated only one sperm nucleus, and experimentally polyspermic eggs underwent multipolar division. Accessory sperm did not degenerate in the egg cytoplasm, indicating lack of an intracellular polyspermy block. By comparison, fertilization of Bufo japonicus (anuran) was also voltage dependent, whereas that of Cynops pyrrhogaster (urodele) was voltage independent. Thus polyspermy prevention mechanisms in Hynobius closely resemble those of anuran amphibians and differ from those of higher urodeles.  相似文献   

13.
Barriers to polyspermy (fertilization of a female gamete by more than one sperm) are essential to successful reproduction in a wide range of organisms including mammals, echinoderms, fish, molluscs, and algae. In animals and fucoid algae, polyspermy results in early death of the zygote due to transmission of extra centrioles from the sperm and consequent disruptions to the mitotic spindle. Accordingly, a variety of mechanisms have evolved to prevent penetration of an egg by more than one sperm, or more than one sperm nucleus from fusing with an egg nucleus. The evolution of internal fertilization has also provided an opportunity to limit the number of sperm that gain access to each egg, as occurs in the mammalian female reproductive tract. Polyspermy and polyspermy barriers in plants have received much less attention. Plants lack centrioles and therefore, polyspermy would not be expected to cause lethal aberrant spindle organization. However, we find evidence from cytological, genetic and in vitro fertilization studies for polyspermy barriers in plants. Angiosperms, like mammals, are internally fertilized, and exert a high level of control over the number of sperm that have access to each female gamete. In particular, regulation of pollen tube growth ensures that in general only two sperm enter each embryo sac, where one fertilizes the egg and the other the central cell. Despite this 1:1 ratio of sperm to gametes within the embryo sac, angiosperms still require a mechanism to ensure that each female gamete is fertilized by one and only one sperm. Here, we present evidence suggesting that a polyspermy block on the egg may be part of the mechanism that promotes faithful double fertilization.  相似文献   

14.
This study examines the effects of actin microfilament-disrupting drugs on events of fertilization, with emphasis on gamete membrane interactions. Mouse eggs, freed of their zonae pellucidae, were treated with drugs that perturb the actin cytoskeleton by different mechanisms (cytochalasin B, cytochalasin D, jasplakinolide, latrunculin B) and then inseminated. Cytochalasin B, jasplakinolide, and latrunculin B treatments resulted in a decrease in the percentage of eggs fertilized and the average number of sperm fused per egg. However, cytochalasin D treatment resulted in an increase in the average number of sperm fused per egg and the percentage of polyspermic eggs. This increase in polyspermy occurred despite the observation that cytochalasin D treatment caused a decrease in sperm-egg binding and did not affect spontaneous acrosome reactions or sperm motility. This suggested that cytochalasin D-treated eggs had an impaired ability to establish a block to polyspermy at the level of the plasma membrane. The effect of cytochalasin D on the block to polyspermy was not due to a general disruption of egg activation because sperm-induced calcium oscillations and cortical granule exocytosis were similar in cytochalasin D-treated and control eggs. However, buffering of intracellular calcium levels with the calcium chelator BAPTA-AM resulted in an increase in polyspermy. Together, these data suggest that a postfertilization decrease in egg membrane receptivity to sperm requires functions of the egg actin cytoskeleton that are disrupted by cytochalasin D. Furthermore, egg activation-associated increased intracellular calcium levels are necessary but not sufficient to affect postfertilization membrane dynamics that contribute to a membrane block to polyspermy.  相似文献   

15.
In most species, cortical granule exocytosis is characteristic of egg activation by sperm. It is a Ca(2+)-mediated event which results in elevation of the vitelline coat to block permanently the polyspermy at fertilization. We examined the effect of mastoparan, an activator of G-proteins, on the sea urchin egg activation. Mastoparan was able to induce, in a concentration-dependent manner, the egg cortical granule exocytosis; mastoparan-17, an inactive analogue of mastoparan, had no effect. Mastoparan, but not sperm, induced cortical granule exocytosis in eggs preloaded with BAPTA, a Ca(2+) chelator. In isolated egg cortical lawns, which are vitelline layers and membrane fragments with endogenously docked cortical granules, mastoparan induced cortical granule fusion in a Ca(2+)-independent manner. By contrast, mastoparan-17 did not trigger fusion. We conclude that in sea urchin eggs mastoparan stimulates exocytosis at a Ca(2+)-independent late site of the signaling pathway that culminates in cortical granule discharge.  相似文献   

16.
Fertilization by more than one sperm causes polyploidy, a condition that is generally lethal to the embryo in the majority of animal species. To prevent this occurrence, eggs have developed a series of mechanisms that block polyspermy at the level of the plasma membrane or their extracellular coat. In this review, we first introduce the mammalian egg coat, the zona pellucida (ZP), and summarize what is currently known about its composition, structure, and biological functions. We then describe how this specialized extracellular matrix is modified by the contents of cortical granules (CG), secretory organelles that are exocytosed by the egg after gamete fusion. This process releases proteases, glycosidases, lectins and zinc onto the ZP, resulting in a series of changes in the properties of the egg coat that are collectively referred to as hardening. By drawing parallels with comparable modifications of the vitelline envelope of nonmammalian eggs, we discuss how CG‐dependent modifications of the ZP are thought to contribute to the block to polyspermy. Moreover, we argue for the importance of obtaining more information on the architecture of the ZP, as well as systematically investigating the many facets of ZP hardening.  相似文献   

17.
To ensure normal development, most animals have evolved a number of mechanisms to block polyspermy including prevention of binding to surface coats as well as sperm-egg fusion. Ascidian sperm bind to vitelline coat (VC) glycosides. In the genus Ascidia, N-acetylglucosamine (GlcNAc) is the ligand to which sperm bind. The number of sperm bound to the VC is biphasic following fertilization; sperm binding increases through the first minute or so, then abruptly declines. At fertilization, the eggs of Ascidia callosa, A. ceratodes, A. mentula, A. nigra and Phallusia mammillata release N-acetylglucosaminidase into the sea water (SW). This has been shown to inactivate VC GlcNAc groups, blocking the binding of supernumerary sperm and polyspermy in A. nigra. This block to polyspermy is inactivated by GlcNAc (2mM) or 150 mM-Na+ (choline substituted) SW. These treatments are not additive and therefore probably affect the same process. In A. callosa, fertilization in low Na+ SW causes a 60% decline in enzyme release and a similar increase in the number of sperm remaining on the VC at 4 min as well as a great increase in polyspermy. Thus the principal block to polyspermy in ascidian eggs involves the release of N-acetylglucosaminidase which appears to be Na+ dependent. Enzyme activity is found in the supernatant SW by 15 s after fertilization, suggesting that it is stored very near the egg surface. Histochemical staining of whole eggs and embryos shows loss of surface-associated enzyme activity following fertilization. Like other lysosomal enzymes this N-acetylglucosaminidase is mannosylated and has an acidic pH optimum.  相似文献   

18.
Fertilization by more than one sperm in sea urchins inevitably leads to uneven division and death of the embryo. We provide evidence for a block against this polyspermy involving the hydrogen peroxide release by the egg during fertilization that is triggered by entry of the successful sperm. Polyspermy in 100% of fertilized eggs was demonstrated when catalase was added to destroy hydrogen peroxide immediately after fertilization. Soybean trypsin inhibitor, another polyspermic agent, is shown to prevent the formation of hydrogen peroxide in the fertilized egg. This suggests that the protease released from egg cortical granules during fertilization plays a role in the hydrogen peroxide generating system.  相似文献   

19.
Polyspermy blocking, to ensure monospermic fertilization, is necessary for normal diploid development in most animals. We have demonstrated here that monospermy in the clawed frog, Xenopus tropicalis, as well as in X. laevis, is ensured by a fast, electrical block to polyspermy on the egg plasma membrane after the entry of the first sperm, which is mediated by the positive‐going fertilization potential. An intracellular Ca2+ concentration ([Ca2+]i) at the sperm entry site was propagated as a Ca2+ wave over the whole egg cytoplasm. In the X. tropicalis eggs fertilized in 10% Steinberg's solution, the positive‐going fertilization potential of +27 mV was generated by opening of Ca2+‐activated Cl?‐channels (CaCCs). The fertilization was completely inhibited when the egg's membrane potential was clamped at +10 mV and 0 mV in X. tropicalis and X. laevis, respectively. In X. tropicalis, a small number of eggs were fertilized at 0 mV. In the eggs whose membrane potential was clamped below ?10 mV, a large increase in inward current, the fertilization current, was recorded and allowed polyspermy to occur. A small initial step‐like current (IS current) was observed at the beginning of the increase in the fertilization current. As the IS current was elicited soon after a small increase in [Ca2+]i, this is probably mediated by the opening of CaCCs. This study not only characterized the fast and electrical polyspermy in X. tropicalis, but also explained that the initial phase of [Ca2+]i increase causes IS current during the early phase of egg activation of Xenopus fertilization.  相似文献   

20.
The electrical response of mature anuran eggs to the fertilizing sperm consists of a rapid depolarization and a decrease in resistance of the plasma membrane (fertilization potential) and serves as a fast block to polyspermy. We report here that the fertilization potential, previously thought to be the earliest electrical response of the egg, is preceded in Rana temporaria by changes in voltage noise. Voltage noise was recorded after insemination and compared in monospermic and NaI-induced polyspermic eggs. Fertilization potential in monospermic eggs arised at 1 min 45 sec to 2 min 15 sec after insemination, and that in NaI-induced polyspermic eggs did at 3 min to 3 min 30 sec after insemination. However, the increase in voltage noise was detected at the similar time (1–2 min 30 sec) after insemination in both the eggs. The duration of voltage noise increase before the fertilization potential was larger in polyspermic eggs (50–105 sec) than in monospermic eggs (10–40 sec). Polyspermic fertilization in Rana temporaria induced by NaI was checked by visualizing multiple sperm entry sites with the scanning microscope. The process of sperm entry and the development of the fertilization body are similar to those occurring with monospermic fertilization; furthermore all supernumerary sperm fuse only with the animal hemisphere of the egg. Although the physiological basis of the changes in voltage noise is unclear, these alterations appear to be the earliest electrical response to sperm yet reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号