首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycomb repressive complexes (PRCs) play critical roles in cell fate decisions during normal development as well as disease progression through mediating histone modifications such as H3K27me3 and H2AK119ub. How exactly PRCs recruited to chromatin remains to be fully illuminated. Here, we report that YTHDF1, the N6-methyladenine (m6A) RNA reader that was previously known to be mainly cytoplasmic, associates with RNF2, a PRC1 protein that mediates H2AK119ub in human embryonic stem cells (hESCs). A portion of YTHDF1 localizes in the nuclei and associates with RNF2/H2AK119ub on a subset of gene loci related to neural development functions. Knock-down YTHDF1 attenuates H2AK119ub modification on these genes and promotes neural differentiation in hESCs. Our findings provide a noncanonical mechanism that YTHDF1 participates in PRC1 functions in hESCs.  相似文献   

2.
Kim BK  Kim SE  Shim JH  Woo DH  Gil JE  Kim SK  Kim JH 《FEBS letters》2006,580(25):5869-5874
Vascular endothelial growth factor (VEGF), a potent mitogen for vascular endothelial cells, has been suggested as a modulator that is involved in neurogenesis as well as angiogenesis. Here, we directly examined the effect of VEGF on neuroectodermal differentiation using human embryonic stem cells (hESCs). VEGF treatment upregulated the expression of neuroectodermal genes (Sox1 and Nestin) during germ layer formation in embryoid bodies (EBs) and efficiently increased the number of neural rosettes expressing both Pax6 and Nestin. The neural progenitors generated from VEGF-treated EBs further differentiated into cells that showed a similar pattern of gene expression observed in the development of dopaminergic neurons upon terminal differentiation. These results support the neurogenic effect of VEGF on hESC differentiation.  相似文献   

3.
目的:比较通过慢病毒方法获得的人诱导多能性干细胞(iPSCs)与人胚胎干细胞(hESCs)分化过程中全能性基因Oct4、Nanog的表达变化。方法:收集分化不同时间点的拟胚体(EBs),检测三胚层分化基因以及全能性基因Oct4/Nanog的表达,并通过畸胎瘤组织切片的荧光染色分析Oct4的表达。结果:iPSCs获得的EB中内外三胚层分化基因表达的出现明显晚于hESCs来源的EB。不同于hESCs,iPSCs悬浮培养获得的EBs在体外培养18天未见内源性Oct4、Nanog基因表达的下调。未分化的iPSCs注射严重联合免疫缺陷(SCID)小鼠培养10周后获得的畸胎瘤中仍存在Oct4阳性的细胞,但iPS-#2中明显少于iPS-#5。结论:通过慢病毒方法获得的iPSCs虽然具有向三胚层分化的能力,但在分化过程中仍维持较高水平的全能性基因Oct4、Nanog的表达。  相似文献   

4.
Human embryonic stem cells (hESCs) have the ability to differentiate into all human cells, however controlling the differentiation has always been a challenge. In the present study we have investigated the direct differentiation of hESCs on MEFs by using TGF-β signaling pathway activators Activin A and Activin B. Activation of the TGF-β pathway with Activin B in low serum highly induced primitive streak and mesendoderm formation after 24 h, which included up-regulation of SOX 17 and BRACHYURY protein and gene expression. Continuous stimulation with Activin B in 2% serum further induced mesendoderm formation by increased gene expression of Brachyury, SOX17, MEOX and FOX at the same time we found down-regulation of neuroectodermal marker genes. Further, by stimulating the mesodermal cells by BMP-2 we succeeded to induce mesenchymal like cells with high expression of mesenchymal markers including; MEOX, FOX, RUNX2, COL1 and OSTEOPONTIN. In conclusion we have directed the differentiation of hESCs as monolayer to primitive streak like cells with Activin B and further into pure mesoderm and mesenchymal like cells by BMP-2.  相似文献   

5.
Human pluripotent stem cells (PSCs) have been utilized as a promising source in regenerative medicine. However, the risk of teratoma formation that comes with residual undifferentiated PSCs in differentiated cell populations is most concerning in the clinical use of PSC derivatives. Here, we report that a monoclonal antibody (mAb) targeting PSCs could distinguish undifferentiated PSCs, with potential teratoma-forming activity, from differentiated PSC progeny. A panel of hybridomas generated from mouse immunization with H9 human embryonic stem cells (hESCs) was screened for ESC-specific binding using flow cytometry. A novel mAb, K312, was selected considering its high stem cell-binding activity, and this mAb could bind to several human induced pluripotent stem cells and PSC lines. Cell-binding activity of K312 was markedly decreased as hESCs were differentiated into embryoid bodies or by retinoic acid treatment. In addition, a cell population negatively isolated from undifferentiated or differentiated H9 hESCs via K312 targeting showed a significantly reduced expression of pluripotency markers, including Oct4 and Nanog. Furthermore, K312-based depletion of pluripotent cells from differentiated PSC progeny completely prevented teratoma formation. Therefore, our findings suggest that K312 is utilizable in improving stem cell transplantation safety by specifically distinguishing residual undifferentiated PSCs.  相似文献   

6.
目的:比较通过慢病毒方法获得的人诱导多能性干细胞(iPSCs)与人胚胎干细胞(hESCs)分化过程中全能性基因Oct4、Nanog的表达变化。方法:收集分化不同时间点的拟胚体(EBs),检测三胚层分化基因以及全能性基因Oct4/Nanog的表达,并通过畸胎瘤组织切片的荧光染色分析Oct4的表达。结果:iPSCs获得的EB中内外三胚层分化基因表达的出现明显晚于hESCs来源的EB。不同于hESCs,iPSCs悬浮培养获得的EBs在体外培养18天未见内源性Oct4、Nanog基因表达的下调。未分化的iPSCs注射严重联合免疫缺陷(SCID)小鼠培养10周后获得的畸胎瘤中仍存在Oct4阳性的细胞,但iPS-#2中明显少于iPS-#5。结论:通过慢病毒方法获得的iPSCs虽然具有向三胚层分化的能力,但在分化过程中仍维持较高水平的全能性基因Oct4、Nanog的表达。  相似文献   

7.
Polycomb repressive complex 1 (PRC1) plays an essential role in the epigenetic repression of gene expression during development and cellular differentiation via multiple effector mechanisms, including ubiquitination of H2A and chromatin compaction. However, whether it regulates the stepwise progression of adipogenesis is unknown. Here, we show that FBXL10/KDM2B is an anti-adipogenic factor that is up-regulated during the early phase of 3T3-L1 preadipocyte differentiation and in adipose tissue in a diet-induced model of obesity. Interestingly, inhibition of adipogenesis does not require the JmjC demethylase domain of FBXL10, but it does require the F-box and leucine-rich repeat domains, which we show recruit a noncanonical polycomb repressive complex 1 (PRC1) containing RING1B, SKP1, PCGF1, and BCOR. Knockdown of either RING1B or SKP1 prevented FBXL10-mediated repression of 3T3-L1 preadipocyte differentiation indicating that PRC1 formation mediates the inhibitory effect of FBXL10 on adipogenesis. Using ChIP-seq, we show that FBXL10 recruits RING1B to key specific genomic loci surrounding the key cell cycle and the adipogenic genes Cdk1, Uhrf1, Pparg1, and Pparg2 to repress adipogenesis. These results suggest that FBXL10 represses adipogenesis by targeting a noncanonical PRC1 complex to repress key genes (e.g. Pparg) that control conversion of pluripotent cells into the adipogenic lineage.  相似文献   

8.
Human embryonic stem cells (hESCs) have the potential to differentiate into various cell types, and the three germ layers in vivo and in vitro. They are therefore useful in transplantation and tissue engineering. Here, we describe the expression patterns of selected steroid receptor mRNAs - estrogen receptor-alpha (ER-alpha), ER-beta, glucocorticoid receptor (GR), and progesterone receptor (PR) - in undifferentiated hESCs and embryoid bodies (EBs) cultured for 2, 4, and 6 d, as assessed by real-time PCR, in order to define the possible influence of steroid hormones on the differentiation of hESCs. These receptor mRNAs were expressed in undifferentiated hESCs and EBs. The expression of PR mRNA only decreased during the differentiation of EBs but not of hESCs. Immunohistochemical analysis gave strong staining of ER-alpha, ER-beta, and GR proteins in the nuclei of hESCs and EBs, whereas PR was not detected. We also examined the potential of these steroid hormones to direct the differentiation of hESCs in vitro. The expression of 11 cell-specific markers representing 3 germ layers and 5 tissue types was used to assess the differentiation of hESCs. We found that certain endodermal marker genes were either only expressed in the estrogen-treated group or their expression was stimulated in that group, suggesting that steroid hormones can control the differentiation of hESCs into various cell types.  相似文献   

9.
The study of how human embryonic stem cells (hESCs) differentiate into insulin-producing beta cells has twofold significance: first, it provides an in vitro model system for the study of human pancreatic development, and second, it serves as a platform for the ultimate production of beta cells for transplantation into patients with diabetes. The delineation of growth factor interactions regulating pancreas specification from hESCs in vitro is critical to achieving these goals. In this study, we describe the roles of growth factors bFGF, BMP4 and Activin A in early hESC fate determination. The entire differentiation process is carried out in serum-free chemically-defined media (CDM) and results in reliable and robust induction of pancreatic endoderm cells, marked by PDX1, and cell clusters co-expressing markers characteristic of beta cells, including PDX1 and insulin/C-peptide. Varying the combinations of growth factors, we found that treatment of hESCs with bFGF, Activin A and BMP4 (FAB) together for 3–4 days resulted in strong induction of primitive-streak and definitive endoderm-associated genes, including MIXL1, GSC, SOX17 and FOXA2. Early proliferative foregut endoderm and pancreatic lineage cells marked by PDX1, FOXA2 and SOX9 expression are specified in EBs made from FAB-treated hESCs, but not from Activin A alone treated cells. Our results suggest that important tissue interactions occur in EB-based suspension culture that contribute to the complete induction of definitive endoderm and pancreas progenitors. Further differentiation occurs after EBs are embedded in Matrigel and cultured in serum-free media containing insulin, transferrin, selenium, FGF7, nicotinamide, islet neogenesis associated peptide (INGAP) and exendin-4, a long acting GLP-1 agonist. 21–28 days after embedding, PDX1 gene expression levels are comparable to those of human islets used for transplantation, and many PDX1+ clusters are formed. Almost all cells in PDX1+ clusters co-express FOXA2, HNF1ß, HNF6 and SOX9 proteins, and many cells also express CPA1, NKX6.1 and PTF1a. If cells are then switched to medium containing B27 and nicotinamide for 7–14 days, then the number of insulin+ cells increases markedly. Our study identifies a new chemically defined culture protocol for inducing endoderm- and pancreas-committed cells from hESCs and reveals an interplay between FGF, Activin A and BMP signaling in early hESC fate determination.  相似文献   

10.
11.
12.
Lim HJ  Han J  Woo DH  Kim SE  Kim SK  Kang HG  Kim JH 《Molecules and cells》2011,31(2):123-132
The mammalian reproductive tract is known to contain 1.5–5.3% oxygen (O2), but human embryonic stem cells (hESCs) derived from preimplantation embryos are typically cultured under 21% O2 tension. The aim of this study was to investigate the effects of O2 tension on the long-term culture of hESCs and on cell-fate determination during early differentiation. hESCs and embryoid bodies (EBs) were grown under different O2 tensions (3, 12, and 21% O2). The expression of markers associated with pluripotency, embryonic germ layers, and hypoxia was analyzed using RTPCR, immunostaining, and Western blotting. Proliferation, apoptosis, and chromosomal aberrations were examined using BrdU incorporation, caspase-3 immunostaining, and karyotype analysis, respectively. Structural and morphological changes of EBs under different O2 tensions were comparatively examined using azan- and hematoxylineosin staining, and scanning and transmission electron microscopy. Mild hypoxia (12% O2) increased the number of cells expressing Oct4/Nanog and reduced BrdU incorporation and aneuploidy. The percentage of cells positive for active caspase-3, which was high during normoxia (21% O2), gradually decreased when hESCs were continuously cultured under mild hypoxia. EBs subjected to hypoxia (3% O2) exhibited well-differentiated microvilli on their surface, secreted high levels of collagen, and showed enhanced differentiation into primitive endoderm. These changes were associated with increased expression of Foxa2, Sox17, AFP, and GATA4 on the EB periphery. Our data suggest that mild hypoxia facilitates the slow mitotic division of hESCs in long-term culture and reduces the frequency of chromosomal abnormalities and apoptosis. In addition, hypoxia promotes the differentiation of EBs into extraembryonic endoderm.  相似文献   

13.
The heterogeneous nature of mammalian PRC1 complexes has hindered our understanding of their biological functions. Here, we present a comprehensive proteomic and genomic analysis that uncovered six major groups of PRC1 complexes, each containing a distinct PCGF subunit, a RING1A/B ubiquitin ligase, and a unique set of associated polypeptides. These PRC1 complexes differ in their genomic localization, and only a small subset colocalize with H3K27me3. Further biochemical dissection revealed that the six PCGF-RING1A/B combinations form multiple complexes through association with RYBP or its homolog YAF2, which prevents the incorporation of other canonical PRC1 subunits, such as CBX, PHC, and SCM. Although both RYBP/YAF2- and CBX/PHC/SCM-containing complexes compact chromatin, only RYBP stimulates the activity of RING1B toward H2AK119ub1, suggesting a central role in PRC1 function. Knockdown of RYBP in embryonic stem cells compromised their ability to form embryoid bodies, likely because of defects in cell proliferation and maintenance of H2AK119ub1 levels.  相似文献   

14.
15.
Currently, there are difficulties associated with the culturing of pluripotent human embryonic stem cells (hESCs), and knowledge regarding their regulatory mechanisms is limited. MicroRNAs (miRNAs) regulate gene expression and have critical functions in stem cell self-renewal and differentiation. Moreover, fibroblast growth factor (FGF) and the insulin-like growth factor receptor (IGF-1R) are key activators of signaling in hESCs. Based on the identification of complementary binding sites in miR-223 and IGF-1R mRNA, it is proposed that miR-223 acts as a local regulator of IGF-1R. Therefore, levels of miR-223 were detected in differentiated versus undifferentiated hESCs. In addition, proliferation, apoptosis, and differentiation were assayed in these two hESC populations and were compared in the presence of exogenous miR-223 and miR-223 inhibitor. Inhibition of miR-223 was found to maintain the undifferentiated state of hESCs, while addition of miR-223 induced differentiation. Furthermore, these effects were found to be likely dependent on IGF-1R/Akt signaling.  相似文献   

16.
Pluripotent stem cells (PSCs) have been traditionally expanded on a two-dimensional (2D) surface and require substrates coated with extracellular matrix (ECM) proteins. Recently, PSCs have been successfully expanded in suspension as undifferentiated PSC aggregates, which offer a means for large-scale production. Toward lineage-specific differentiation, PSCs can form aggregate-like structures known as embryoid bodies (EBs). The morphology and size of EBs have been shown to significantly affect the differentiation into specific lineages and three-dimensional (3D) tissue development, thus efforts have been devoted to form size-controlled EBs. The integration of both PSC expansion and differentiation in suspension promotes PSC-derived cell production in bioreactors. However, the cellular organization and differentiation potential of PSC aggregates, as well as the role of the cues provided by the reactors to regulate EB fate, have yet to be fully understood. Despite these challenges, integrated PSC aggregate-based culture provides a platform for a simple, scalable bioprocess for the potential application of PSCs in regenerative medicine, disease modeling, and drug discovery.  相似文献   

17.
Nodal, a member of the TGF-β family of signaling molecules, has been implicated in pluripotency in human embryonic stem cells (hESCs) [Vallier, L., Reynolds, D., Pedersen, R.A., 2004a. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol. 275, 403-421], a finding that seems paradoxical given Nodal's central role in mesoderm/endoderm specification during gastrulation. In this study, we sought to clarify the role of Nodal signaling during hESC differentiation by constitutive overexpression of the endogenous Nodal inhibitors Lefty2 (Lefty) and truncated Cerberus (Cerb-S) and by pharmacological interference using the Nodal receptor antagonist SB431542. Compared to wildtype (WT) controls, embryoid bodies (EBs) derived from either Lefty or Cerb-S overexpressing hESCs showed increased expression of neuroectoderm markers Sox1, Sox3, and Nestin. Conversely, they were negative for a definitive endoderm marker (Sox17) and did not generate beating cardiomyocyte structures in conditions that allowed mesendoderm differentiation from WT hESCs. EBs derived from either Lefty or Cerb-S expressing hESCs also contained a greater abundance of neural rosette structures as compared to controls. Differentiating EBs derived from Lefty expressing hESCs generated a dense network of β-tubulin III positive neurites, and when Lefty expressing hESCs were grown as a monolayer and allowed to differentiate, they generated significantly higher numbers of β-tubulin positive neurons as compared to wildtype hESCs. SB431542 treatments reproduced the neuralising effects of Lefty overexpression in hESCs. These results show that inhibition of Nodal signaling promotes neuronal specification, indicating a role for this pathway in controlling early neural development of pluripotent cells.  相似文献   

18.

Background

Constitutive promoters that ensure sustained and high level gene expression are basic research tools that have a wide range of applications, including studies of human embryology and drug discovery in human embryonic stem cells (hESCs). Numerous cellular/viral promoters that ensure sustained gene expression in various cell types have been identified but systematic comparison of their activities in hESCs is still lacking.

Methodology/Principal Findings

We have quantitatively compared promoter activities of five commonly used constitutive promoters, including the human β-actin promoter (ACTB), cytomegalovirus (CMV), elongation factor-1α, (EF1α), phosphoglycerate kinase (PGK) and ubiquitinC (UbC) in hESCs. Lentiviral gene transfer was used to ensure stable integration of promoter-eGFP constructs into the hESCs genome. Promoter activities were quantitatively compared in long term culture of undifferentiated hESCs and in their differentiated progenies.

Conclusion/Significance

The ACTB, EF1α and PGK promoters showed stable activities during long term culture of undifferentiated hESCs. The ACTB promoter was superior by maintaining expression in 75–80% of the cells after 50 days in culture. During embryoid body (EB) differentiation, promoter activities of all five promoters decreased. Although the EF1α promoter was downregulated in approximately 50% of the cells, it was the most stable promoter during differentiation. Gene expression analysis of differentiated eGFP+ and eGFP- cells indicate that promoter activities might be restricted to specific cell lineages, suggesting the need to carefully select optimal promoters for constitutive gene expression in differentiated hESCs.  相似文献   

19.
Human embryonic stem cells (hESCs) are of great hope for regenerative medicine due to their dual pluripotency and self-renewal properties. We report a comparison of inositol phosphate (InsP(s)) production in undifferentiated, differentiated hESCs and in two cancer cell lines, Ntera2 cells, a human embryonal carcinoma cell (hECC) line and HeLa cells. To evaluate the potential impact of InsP(s) in differentiation, hESCs were spontaneously differentiated in culture for two weeks. The distribution of the different InsP(s) was affected upon differentiation: the level of highly phosphorylated InsP(s) was decreased. In contrast, the total level of phosphoinositides (PI) was increased. Using real time quantitative PCR (qPCR), the mRNA expression of several enzymes of the metabolism of InsP(s) was determined: a specific increase in inositol 1,4,5-trisphosphate 3-kinase A and B (ITPKA and ITPKB) was observed upon hESCs spontaneous differentiation. Ins(1,4,5)P(3) 3-kinase activity, undetectable in undifferentiated hESCs, increased upon differentiation. The same observation was made by Western blotting using an antibody directed against human ITPKB. This is the first report showing the potential implication of soluble InsP(s) in hESCs and possible function of isoenzymes of the inositol trisphosphate 3-kinase family in differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号