共查询到20条相似文献,搜索用时 8 毫秒
1.
Cao Ma Zhi‐Kui Nie Hong‐Min Guo Yao Kong 《Journal of biochemical and molecular toxicology》2020,34(7)
The aim of our study was to explore the roles of miR‐671‐5p in mediating biological processes of osteosarcoma (OS) cells and clinical implications. On the basis of the OS samples acquired from the GEO database, the expression difference and overall survival analyses of miR‐671‐5p and TUFT1 were determined. The expression of MiR‐671‐5p was verified using OS cell lines. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide, wound‐healing, and Transwell assays were respectively carried out to probe whether miR‐671‐5p regulated OS cell vitality, migration, and invasion. The expression of miR‐671‐5p was downregulated in OS tissues and cell lines. High expression of MiR‐671‐5p blocked OS cell growth, migration, and invasion. TUFT1 was predicted and validated as the target of miR‐671‐5p in OS cells using in silico analysis and luciferase reporter assays. Forced expression of TUFT1 reversed the suppressive influence of miR‐671‐5p on cell viability, migration, and invasion of OS cells. Moreover, the low expression of miR‐671‐5p and the high expression of TUFT1 led to poor prognosis. Taken together, targeting miR‐671‐5p/TUFT1 may be a promising strategy for treating OS. 相似文献
2.
MicroRNA‐425‐5p regulates chemoresistance in colorectal cancer cells via regulation of Programmed Cell Death 10 下载免费PDF全文
Xiaofei Miao Kuiyu Zhu Songkui Cui Qingyang Meng Jialin Sun Tong Wang 《Journal of cellular and molecular medicine》2016,20(2):360-369
Acquired chemoresistance represents a major obstacle in cancer treatment, the underlying mechanism of which is complex and not well understood. MiR‐425‐5p has been reported to be implicated tumorigenesis in a few cancer types. However, its role in regulating chemoresistance has not been investigated in colorectal cancer (CRC) cells. Microarray analysis was performed in isogenic chemosensitive and chemoresistant HCT116 cell lines to identify differentially expressed miRNAs. miRNA quantitative real‐time PCR was used to detect miR‐425‐5p expression levels between drug resistant and parental cancer cells. MiR‐425‐5p mimic and inhibitor were transfected, followed by CellTiter‐Glo® assay to examine drug sensitivity in these two cell lines. Western Blot and luciferase assay were performed to investigate the direct target of miR‐425‐5p. Xenograft mouse models were used to examine in vivo function of miR‐425‐5p. Our data showed that expression of miR‐425‐5p was significantly up‐regulated in HCT116‐R compared with parental HCT116 cells. Inhibition of miR‐425‐5p reversed chemoresistance in HCT116‐R cells. Programmed cell death 10 (PDCD10) is the direct target of miR‐425‐5p which is required for the regulatory role of miR‐425‐5p in chemoresistance. MiR‐425‐5p inhibitor sensitized HCT116‐R xenografts to chemo drugs in vivo. Our study demonstrated that miR‐425‐5p regulates chemoresistance of CRC cells by modulating PDCD10 expression level both in vitro and in vivo. MiR‐425‐5p may represent a new therapeutic target for the intervention of CRC. 相似文献
3.
4.
5.
Weixin Xie Jie Xiao Tao Wang Dongmei Zhang Zhanchun Li 《Journal of cellular and molecular medicine》2019,23(5):3293-3301
Recently, aberrant expression of miR‐876‐5p has been reported to participate in the progression of several human cancers. However, the expression and function of miR‐876‐5p in osteosarcoma (OS) are still unknown. Here, we found that the expression of miR‐876‐5p was significantly down‐regulated in OS tissues compared to para‐cancerous tissues. Clinical association analysis indicated that underexpression of miR‐876‐5p was positively correlated with advanced clinical stage and poor differentiation. More importantly, OS patients with low miR‐876‐5p level had a significant shorter overall survival compared to miR‐876‐5p high‐expressing patients. In addition, gain‐ and loss‐of‐function experiments demonstrated that miR‐876‐5p restoration suppressed whereas miR‐876‐5p knockdown promoted cell proliferation, migration and invasion in both U2OS and MG63 cells. In vivo studies revealed that miR‐876‐5p overexpression inhibited tumour growth of OS in mice. Mechanistically, miR‐876‐5p reduced c‐Met abundance in OS cells and inversely correlated c‐Met expression in OS tissues. Herein, c‐Met was recognized as a direct target of miR‐876‐5p using luciferase reporter assay. Notably, c‐Met restoration rescued miR‐876‐5p attenuated the proliferation, migration and invasion of OS cells. In conclusion, these findings indicate that miR‐876‐5p may be used as a potential therapeutic target and promising biomarker for the diagnosis and prognosis of OS. 相似文献
6.
Peng Li Zhiwei Xiao Jiajun Luo Yaojun Zhang Lizhu Lin 《Journal of cellular and molecular medicine》2019,23(4):2475-2488
The study was aimed to screen out miRNAs with differential expression in hepatocellular carcinoma (HCC), and to explore the influence of the expressions of these miRNAs and their target gene on HCC cell proliferation, invasion and apoptosis. MiRNAs with differential expression in HCC were screened out by microarray analysis. The common target gene of these miRNAs (miR‐139‐5p, miR‐940 and miR‐193a‐5p) was screened out by analysing the target genes profile (acquired from Targetscan) of the three miRNAs. Expression levels of miRNAs and SPOCK1 were determined by quantitative real time polymerase chain reaction (qRT‐PCR). The target relationships were verified by dual luciferase reporter gene assay and RNA pull‐down assay. Through 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide,thiazolyl blue tetrazolium bromide (MTT) and transwell assays and flow cytometry, HCC cell viability, invasion and apoptosis were determined. In vivo experiment was conducted in nude mice to investigate the influence of three miRNAs on tumour growth. Down‐regulation of miR‐139‐5p, miR‐940 and miR‐193a‐5p was found in HCC. Overexpression of these miRNAs suppressed HCC cell viability and invasion, promoted apoptosis and inhibited tumour growth. SPOCK1, the common target gene of miR‐139‐5p, miR‐940 and miR‐193a‐5p, was overexpressed in HCC. SPOCK1 overexpression promoted proliferation and invasion, and restrained apoptosis of HCC cells. MiR‐139‐5p, miR‐940 and miR‐193a‐5p inhibited HCC development through targeting SPOCK1. 相似文献
7.
The prognosis of glioma is generally poor and is the cause of primary malignancy in the brain. The role of microRNAs has been implicated in tumour inhibition or activation. In several cancers, the Six1 signalling pathway has been found to be aberrant and also relates to the formation of tumours. We analysed the database for expression profiles and clinical specimens of various grades of glioma to assess microRNA‐155‐3p (miR‐155‐3p) expression. The role of miR‐155‐3p in glioblastoma, cell cycle, proliferation, apoptosis and resistance to temozolomide was assessed in vitro through flow cytometry and cell proliferation assays. Bioinformatics analyses, and assays using luciferase reporter, and immunoblotting revealed that miR‐155‐3p targets Six1 and that the relationship between glioma and healthy brain tissues was significantly inverse. In rescue experiments, overexpressed Six1 revoked the changes in cell cycle distribution, proliferation and resistance to temozolomide estimated by apoptosis induced by overexpressed miR‐155‐3p. MiR‐155‐3p inhibition reduced glioma cell growth and proliferation in the brain of a mouse model and increased the survival of mice with gliomas. Thus, miR‐155‐3p modulates Six1 expression and facilitates the progression of glioblastoma and resistance to temozolomide and may act as a novel diagnostic biomarker and a target for glioma treatment. 相似文献
8.
MicroRNA‐20a‐5p contributes to hepatic glycogen synthesis through targeting p63 to regulate p53 and PTEN expression 下载免费PDF全文
Weiwei Fang Jun Guo Yuan Cao Shuyue Wang Cheng Pang Meng Li Lin Dou Yong Man Xiuqing Huang Tao Shen Jian Li 《Journal of cellular and molecular medicine》2016,20(8):1467-1480
Recently, it is implicated that aberrant expression of microRNAs (miRs) is associated with insulin resistance. However, the role of miR‐17 family in hepatic insulin resistance and its underlying mechanisms remain unknown. In this study, we provided mechanistic insight into the effects of miR‐20a‐5p, a member of miR‐17 family, on the regulation of AKT/GSK pathway and glycogenesis in hepatocytes. MiR‐20a‐5p was down‐regulated in the liver of db/db mice, and NCTC1469 cells and Hep1‐6 cells treated with high glucose, accompanied by reduced glycogen content and impaired insulin signalling. Notably, inhibition of miR‐20a‐5p significantly reduced glycogen synthesis and AKT/GSK activation, whereas overexpression of miR‐20a‐5p led to elevated glycogenesis and activated AKT/GSK signalling pathway. In addition, miR‐20a‐5p mimic could reverse high glucose‐induced impaired glycogenesis and AKT/GSK activation in NCTC1469 and Hep1‐6 cells. P63 was identified as a target of miR‐20a‐5p by bioinformatics analysis and luciferase reporter assay. Knockdown of p63 in the NCTC1469 cells and the Hep1‐6 cells by transfecting with siRNA targeting p63 could increase glycogen content and reverse miR‐20a‐5p inhibition‐induced reduced glycogenesis and activation of AKT and GSK, suggesting that p63 participated in miR‐20a‐5p‐mediated glycogenesis in hepatocytes. Moreover, our results indicate that p63 might directly bind to p53, thereby regulating PTEN expression and in turn participating in glycogenesis. In conclusion, we found novel evidence suggesting that as a member of miR‐17 family, miR‐20a‐5p contributes to hepatic glycogen synthesis through targeting p63 to regulate p53 and PTEN expression. 相似文献
9.
10.
11.
The miR‐3127‐5p/p‐STAT3 axis up‐regulates PD‐L1 inducing chemoresistance in non‐small‐cell lung cancer 下载免费PDF全文
Dongfang Tang Dandan Zhao Yun Wu Ruyong Yao Lin Zhou Liming Lu Wen Gao Yifeng Sun 《Journal of cellular and molecular medicine》2018,22(8):3847-3856
It is less known about miRNA3127‐5p induced up‐regulation of PD‐L1, immune escape and drug resistance caused by increased PD‐L1 in lung cancer. In this study, lentivirus was transduced into lung cancer cells, and quantitative PCR and Western blot were used to detect the expression of PD‐L1. Then immunofluorescence assay was applied to detect autophagy, finally we explored the relationship between PD‐L1 expressions and chemoresistance in patients. As a result, we found that microRNA‐3127‐5p promotes pSTAT3 to induce the expression of PD‐L1; microRNA‐3127‐5p promotes STAT3 phosphorylation through suppressing autophagy, and autophagy could retaine pSTAT3 into the nucleus in miRNA‐3127‐5p knocked cells, and immune escape induced by elevated level of PD‐L1 results in chemoresistance of lung cancer. In conclusion, microRNA‐3127‐5p induces PD‐L1 elevation through regulating pSTAT3 expression. We also demonstrate that immune escape induced by PD‐L1 can be dismissed by corresponding monoclonal antibody. 相似文献
12.
Ha Linh Vu Sheera Rosenbaum Timothy J. Purwin Michael A. Davies Andrew E. Aplin 《Pigment cell & melanoma research》2015,28(5):590-598
Whole exome sequencing of cutaneous melanoma has led to the detection of P29 mutations in RAC1 in 5–9% of samples, but the role of RAC1 P29 mutations in melanoma biology remains unclear. Using reverse phase protein array analysis to examine the changes in protein/phospho‐protein expression, we identified cyclin B1, PD‐L1, Ets‐1, and Syk as being selectively upregulated with RAC1 P29S expression and downregulated with RAC1 P29S depletion. Using the melanoma patient samples in TCGA, we found PD‐L1 expression to be significantly increased in RAC1 P29S patients compared to RAC1 WT as well as other RAC1 mutants. The finding that PD‐L1 is upregulated suggests that oncogenic RAC1 P29S may promote suppression of the antitumor immune response. This is a new insight into the biological function of RAC1 P29S mutations with potential clinical implications as PD‐L1 is a candidate biomarker for increased benefit from treatment with anti‐PD1 or anti‐PD‐L1 antibodies. 相似文献
13.
14.
Ya‐Wen Wang Song Zhao Xun‐Yi Yuan Yao Liu Kai Zhang Jianli Wang Jiang Zhu Rong Ma 《Journal of cellular and molecular medicine》2019,23(4):2549-2557
MiR‐4732‐5p was previously found to be dysregulated in nipple discharge of breast cancer. However, the expression and function of miR‐4732‐5p in breast cancer remain largely unknown. Here, the expression of miR‐4732‐5p was detected using quantitative real‐time PCR in breast cancer tissues and cell lines. Cell proliferation, apoptosis, migration and invasion assays were performed to examine the effects of miR‐4732‐5p in breast cancer. In addition, mRNA sequencing, bioinformatics analysis, Western blot and luciferase assays were performed to identify the target of miR‐4732‐5p. Overall, miR‐4732‐5p was significantly down‐regulated in breast cancer tissues, especially in lymph node metastasis (LNM)‐negative tissues, compared with adjacent normal tissues. However, it was more highly expressed in LNM‐positive breast cancer tissues, compared with LNM‐negative ones. Expression of miR‐4732‐5p was positively correlated with lymph node metastasis, larger tumour size, advanced clinical stage, high Ki‐67 levels and poor prognosis. MiR‐4732‐5p promoted cell proliferation, migration and invasion in breast cancer. MiR‐4732‐5p directly targeted the 3′‐UTR of tetraspanin 13 (TSPAN13) and suppressed TSPAN13 expression at the mRNA and protein levels. These results suggested that miR‐4732‐5p may serve as a tumour suppressor in the initiation of breast cancer, but as a tumour promoter in breast cancer progression by targeting TSPAN13. 相似文献
15.
16.
Si‐Min Yan Hu Li Qing Shu Wei‐Jun Wu Xue‐Mei Luo Lei Lu 《Cell biology international》2020,44(4):1009-1019
Heart failure preceded by pathological cardiac hypertrophy is a leading cause of death. Long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) was reported to inhibit cardiomyocytes apoptosis, but the role and underlying mechanism of SNHG1 in pathological cardiac hypertrophy have not yet been understood. This study was designed to investigate the role and molecular mechanism of SNHG1 in regulating cardiac hypertrophy. We found that SNHG1 was upregulated during cardiac hypertrophy both in vivo (transverse aortic constriction treatment) and in vitro (phenylephrine [PE] treatment). SNHG1 overexpression attenuated the cardiomyocytes hypertrophy induced by PE, while SNHG1 inhibition promoted hypertrophic response of cardiomyocytes. Furthermore, SNHG1 and high‐mobility group AT‐hook 1 (HMGA1) were confirmed to be targets of miR‐15a‐5p. SNHG1 promoted HMGA1 expression by sponging miR‐15a‐5p, eventually attenuating cardiomyocytes hypertrophy. There data revealed a novel protective mechanism of SNHG1 in cardiomyocytes hypertrophy. Thus, targeting of SNHG1‐related pathway may be therapeutically harnessed to treat cardiac hypertrophy. 相似文献
17.
18.
Upregulation of miR‐874‐3p and miR‐874‐5p inhibits epithelial ovarian cancer malignancy via SIK2 下载免费PDF全文
Wei Dong Hong Chen Bing Li Xiaye Zhang Yan Hou Ge Lou 《Journal of biochemical and molecular toxicology》2018,32(8)
Based on miR‐874 expression levels in the GSE47841 microarray, we hypothesized that the mature products of miR‐874, miR‐874‐3p, or miR‐874‐5p, would inhibit epithelial ovarian cancer (EOC) cell proliferation, metastasis, and chemoresistance. We first examined miR‐874‐3p and miR‐874‐5p expression levels in primary EOC tumor tissue samples and found that they were significantly decreased. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) cell proliferation and transwell assays revealed that miR‐874‐3p and miR‐874‐5p significantly inhibit EOC cell proliferation, migration, and invasion. Then, using MTT and soft agar assays of paclitaxel‐treated Caov3 and SKOV3 cells transfected with miR‐874‐3p and miR‐874‐5p, we found that miR‐874‐3p and miR‐874‐5p enhance EOC cell chemosensitivity. We then confirmed that serine/threonine‐protein kinase 2 (SIK2) was a target gene of miR‐874‐3p and miR‐874‐5p. Overall, the results of this study indicate that SIK2 expression can serve as a prognostic biomarker for EOC and that miR‐874‐3p and miR‐874‐5p have the potential to enhance clinical treatment of EOC. 相似文献
19.