首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Head and neck squamous cell carcinoma (HNSCC) is the most common malignancy in Taiwan. Therefore, refining the diagnostic sensitivity of biomarkers for early‐stage tumours and identifying therapeutic targets are critical for improving the survival rate of HNSCC patients. Metabolic reprogramming contributes to cancer development and progression. Metabolic pathways, specifically, play a crucial role in these diverse biological and pathological processes, which include cell proliferation, differentiation, apoptosis and carcinogenesis. Here, we investigated the role and potential prognostic value of the ubiquitin‐conjugating enzyme E2 (UBE2) family in HNSCC. Gene expression database analysis followed by tumour comparison with non‐tumour tissue showed that UBE2C was upregulated in tumours and was associated with lymph node metastasis in HNSCC patients. Knockdown of UBE2C significantly reduced the invasion/migration abilities of SAS and CAL27 cells. UBE2C modulates glycolysis pathway activation and HIF‐1α expression in SAS and CAL27 cells. CoCl2 (HIF‐1α inducer) treatment restored the expression of glycolytic enzymes and the migration/invasion abilities of UBE2C knockdown cells. Based on our findings, UBE2C expression mediates HIF‐1α activation, increasing glycolysis pathway activation and the invasion/migration abilities of cancer cells. UBE2C may be an independent prognostic factor and a therapeutic target in HNSCC.  相似文献   

2.
Ubiquitin-conjugating enzyme 2C (UBE2C) contributes to ubiquitin-mediated proteasome degradation of cell cycle progression in breast cancer. Microcalcification (MC) is the most common mammographic feature of early breast cancer. In this study, we evaluated whether UBE2C could be a tumor marker of early breast cancer with MC found on screening mammography. UBE2C protein and mRNA expression were measured in breast core biopsy pairs of MC and adjacent non-MC breast tissue from each subject. Immunohistochemistry revealed UBE2C positivity in 69.4% of MC samples and 77.6% negativity in non-MC samples (p<0.0001). On RT-qPCR, 56.1% of malignant MC lesion samples showed high mRNA level of UBE2C and 80% of benign MC lesion samples showed a low level of UBE2C (p = 0.1766). We investigated the carcinogenic role of UBE2C in MCF-7 breast cancer cells with UBE2C knockdown; UBE2C knockdown downregulated cell proliferation and activated the cellular apoptosis pathway to inhibit cell colony formation. Furthermore, UBE2C expression was associated with that of carcinogenic genes human epidermal growth factor receptor type 2 (HER2), cellular c-Ki-ras2 proto-oncogene (KRAS), vascular endothelial growth factor (VEGF), CXC chemokine receptor 4 (CXCR4), C-C motif chemokine 5 (CCL5), neural precursor cell expressed, developmentally downregulated 9 (NEDD9) and Ras homolog family member C (RhoC). UBE2C may be a marker for diagnosis of nonpalpable breast lesions but not benign or malignant tumors in mammography core biopsies. Suppression of UBE2C may be a potential therapy target in breast cancer.  相似文献   

3.
Recently, it has been suggested that C2ORF40 is a candidate tumor suppressor gene in breast cancer. However, the mechanism for reduced expression of C2ORF40 and its functional role in breast cancers remain unclear. Here we show that C2ORF40 is frequently silenced in human primary breast cancers and cell lines through promoter hypermethylation. C2ORF40 mRNA level is significantly associated with patient disease-free survival and distant cancer metastasis. Overexpression of C2ORF40 inhibits breast cancer cell proliferation, migration and invasion. By contrast, silencing C2ORF40 expression promotes these biological phenotypes. Bioinformatics and FACS analysis reveal C2ORF40 functions at G2/M phase by downregulation of mitotic genes expression, including UBE2C. Our results suggest that C2ORF40 acts as a tumor suppressor gene in breast cancer pathogenesis and progression and is a candidate prognostic marker for this disease.  相似文献   

4.
Here, we show that miR‐515‐5p inhibits cancer cell migration and metastasis. RNA‐seq analyses of both oestrogen receptor receptor‐positive and receptor‐negative breast cancer cells overexpressing miR‐515‐5p reveal down‐regulation of NRAS, FZD4, CDC42BPA, PIK3C2B and MARK4 mRNAs. We demonstrate that miR‐515‐5p inhibits MARK4 directly 3′ UTR interaction and that MARK4 knock‐down mimics the effect of miR‐515‐5p on breast and lung cancer cell migration. MARK4 overexpression rescues the inhibitory effects of miR‐515‐5p, suggesting miR‐515‐5p mediates this process through MARK4 down‐regulation. Furthermore, miR‐515‐5p expression is reduced in metastases compared to primary tumours derived from both in vivo xenografts and samples from patients with breast cancer. Conversely, miR‐515‐5p overexpression prevents tumour cell dissemination in a mouse metastatic model. Moreover, high miR‐515‐5p and low MARK4 expression correlate with increased breast and lung cancer patients' survival, respectively. Taken together, these data demonstrate the importance of miR‐515‐5p/MARK4 regulation in cell migration and metastasis across two common cancers.  相似文献   

5.
泛素偶联酶2C与多种肿瘤细胞的增殖密切相关,但其与肺癌发生和发展的关系尚不明确。 本研究以肺癌A549细胞为材料,通过RT-PCR、Western印迹、免疫荧光、SA-β-Gal细胞衰老染色、细胞划痕和Trans-well实验,阐明UBE2C与肺癌细胞的增殖、衰老和迁移能力的关系。结果显示,UBE2C在肺癌细胞中的表达明显高于正常细胞。利用基因修饰技术瞬时过表达或靶向沉默UBE2C后,在肺癌A549细胞中,UBE2C的mRNA和蛋白质水平显著增加3.5倍或减少0.5倍,显著促进或抑制细胞增殖,进而减少或增加细胞的凋亡率。过表达UBE2C后,显著抑制细胞衰老;但沉默UBE2C后,则增加细胞衰老。此外,过表达UBE2C后,下调转移相关基因E-钙黏着蛋白的mRNA和蛋白质表达水平,且上调波形蛋白基因的表达水平,进而促进肺癌细胞的迁移。但靶向敲除UBE2C后,上调E-钙黏着蛋白,同时下调波形蛋白表达水平,进而抑制肺癌细胞的迁移。本研究的开展将明确UBE2C在肺癌中的作用及其机制,为以UBE2C为靶点,提高病人生存期提供了理论基础。  相似文献   

6.
7.
Abnormal metabolism of tumour cells is closely related to the occurrence and development of breast cancer, during which the expression of NF‐E2‐related factor 2 (Nrf2) is of great significance. Metastatic breast cancer is one of the most common causes of cancer death worldwide; however, the molecular mechanism underlying breast cancer metastasis remains unknown. In this study, we found that the overexpression of Nrf2 promoted proliferation and migration of breast cancers cells. Inhibition of Nrf2 and overexpression of Kelch‐like ECH‐associated protein 1 (Keap1) reduced the expression of glucose‐6‐phosphate dehydrogenase (G6PD) and transketolase of pentose phosphate pathway, and overexpression of Nrf2 and knockdown of Keap1 had opposite effects. Our results further showed that the overexpression of Nrf2 promoted the expression of G6PD and Hypoxia‐inducing factor 1α (HIF‐1α) in MCF‐7 and MDA‐MB‐231 cells. Overexpression of Nrf2 up‐regulated the expression of Notch1 via G6PD/HIF‐1α pathway. Notch signalling pathway affected the proliferation of breast cancer by affecting its downstream gene HES‐1, and regulated the migration of breast cancer cells by affecting the expression of EMT pathway. The results suggest that Nrf2 is a potential molecular target for the treatment of breast cancer and targeting Notch1 signalling pathway may provide a promising strategy for the treatment of Nrf2‐driven breast cancer metastasis.  相似文献   

8.
The novel human gene, designated ubiquitin-conjugating enzyme E2Q family member 1 (UBE2Q1) maps to chromosome 1q21.3. The gene has an open reading frame corresponding to 422 amino acids and contains a RWD domain and an E2 ubiquitin conjugating enzyme domain. Here, we investigated the expression levels of both mRNA and protein of UBE2Q1 gene in cancerous versus normal parts of breast specimens from 26 patients. Real-time PCR data showed that the relative expression level of UBE2Q1 mRNA was significantly greater in cancers than in non-cancerous tissues of breast specimens (Mean ± SEM, 0.064 ± 0.015 for cancers and 0.026 ± 0.01 for noncancerous tissues, P < 0.05 Mann–Whitney test). A rabbit polyclonal antibody was generated against an amino acid sequence predicted from the DNA sequence of UBE2Q1 gene. This antibody was used to perform Western blotting on 21 cases in our cohort of breast specimens. Thus, 13 (61.904%) of the cases showed an increase in the UBE2Q1 immunoreactivity in their cancerous tissues as compared with the corresponding normal tissues. This result along with the real-time PCR data shows that the novel human gene, UBE2Q1, is expressed in human breast and may have implications for pathogenesis of breast cancer.  相似文献   

9.
The triple‐negative breast cancer is the most malignant type of breast cancer. Its pathogenesis and prognosis remain poor despite the significant advances in breast cancer diagnosis and therapy. Meanwhile, long noncoding RNAs (LncRNAs) play a pivotal role in the progression of malignant tumors. In this study, we found that LncRNA‐ZEB2‐AS1 was dramatically up‐regulated in our breast cancer specimens and cells (MDA231), especially in metastatic tumor specimens and highly invasive cells, and high lncRNA‐ZEB2‐AS1 expression is associated with clinicopathologic features and short survival of breast cancer patients. LncRNA‐ZEB2‐AS1 promotes the proliferation and metastasis of MDA231 cells in SCID mice. Thus, it is regarded as an oncogene in triple‐negative breast cancer. It is mainly endo‐nuclear and situated near ZEB2, positively regulating ZEB2 expression and activating the epithelial mesenchymal transition via the PI3K/Akt/GSK3β/Zeb2 signaling pathway. Meanwhile, EGF‐induced F‐actin polymerization in MDA231 cells can be suppressed by reducing lncRNA‐ZEB2‐AS1 expression. The migration and invasion of triple‐negative breast cancer can be altered through cytoskeleton rearrangement. In summary, we demonstrated that lncRNA‐ZEB2‐AS1 is an important factor affecting the development of triple‐negative breast cancer and thus a potential oncogene target.  相似文献   

10.
PRCC‐TFE3 translocation renal cell carcinomas (tRCC) is a common subtype of TFE3 tRCCs in which TFE3 fusions are indicated as oncogenes to promote tumor development. PRCC‐TFE3 fusions are often accumulated in the nucleus and related to poorer outcomes and higher stages (III/IV). In this study, we found that PRCC‐TFE3 could positively regulate expression of both dynamin‐related protein 1 (Drp1) and fission protein 1, and alter distribution of mitochondria, which could promote cell migration and invasion independent of matrix metalloproteinase‐2 (MMP‐2) and MMP‐9. Together, our findings showed a new mechanism for PRCC‐TFE3 tRCC cell migration and invasion by alteration of mitochondrial dynamics. Thus, targeting dysregulated Drp1‐dependent mitochondrial fission may provide a novel strategy for suppressing the progression of PRCC‐TFE3 tRCC.  相似文献   

11.
Disabled‐1 (Dab1) is best known as an adaptor protein regulating neuron migration and lamination during development. However, the exact function of Dab1 in breast cancer is unknown. In this study, we examined the expression of Dab1 in 38 breast cancer paraffin sections, as well as 60 paired frozen breast cancer and their adjacent tissues. Our results showed that Dab1 was reduced in breast cancer, and its compromised expression correlated with triple negative breast cancer phenotype, poor differentiation, as well as lymph node metastasis. Functional analysis in breast cancer cell lines demonstrated that Dab1 promoted cell apoptosis, which, at least partially, depended on its regulation of NF‐κB/Bcl‐2/caspase‐9 pathway. Our study strongly suggests that Dab1 may be a potential tumour suppressor gene in breast cancer.  相似文献   

12.
Enhancer of zeste homolog 2 (EZH2), an oncogene, is a commonly up‐regulated epigenetic factor in human cancer. Hepatocellular carcinoma deletion gene 1 (DLC1) is an antioncogene that is either expressed at low levels or not expressed in many malignant tumours. Curcumin is a promising anticancer drug that has antitumour effects in many tumours, but its mechanism of action is unclear. Our research demonstrated that EZH2 was up‐regulated in breast cancer (BC) tissues and cells, whereas DLC1 was down‐regulated, and the expression of EZH2 and DLC1 was negatively correlated in BC. By analysing the characteristics of clinical cases, we found that positive expression of EZH2 and negative expression of DLC1 may be predictors of poor prognosis in patients with triple‐negative breast cancer (TNBC). Moreover, knockdown of EZH2 expression restored the expression of DLC1 and inhibited the migration, invasion and proliferation, promoted the apoptosis, and blocked the cell cycle of MDA‐MB‐231 cells. Furthermore, we found that curcumin restored the expression of DLC1 by inhibiting EZH2; it also inhibited the migration, invasion and proliferation of MDA‐MB‐231 cells, promoted their apoptosis and blocked the cell cycle. Finally, xenograft tumour models were used to demonstrate that curcumin restored DLC1 expression by inhibiting EZH2 and also inhibited the growth and promoted the apoptosis of TNBC cells. In conclusion, our results suggest that curcumin can inhibit the migration, invasion and proliferation, promote the apoptosis, block the cycle of TNBC cells and restore the expression of DLC1 by inhibiting the expression of EZH2.  相似文献   

13.
14.
15.
Breast cancer is one of the most deadly forms of cancer in women worldwide. Better prediction of breast cancer prognosis is essential for more personalized treatment. In this study, we aimed to infer patient‐specific subpathway activities to reveal a functional signature associated with the prognosis of patients with breast cancer. We integrated pathway structure with gene expression data to construct patient‐specific subpathway activity profiles using a greedy search algorithm. A four‐subpathway prognostic signature was developed in the training set using a random forest supervised classification algorithm and a prognostic score model with the activity profiles. According to the signature, patients were classified into high‐risk and low‐risk groups with significantly different overall survival in the training set (median survival of 65 vs 106 months, = 1.82e‐13) and test set (median survival of 75 vs 101 months, = 4.17e‐5). Our signature was then applied to five independent breast cancer data sets and showed similar prognostic values, confirming the accuracy and robustness of the subpathway signature. Stratified analysis suggested that the four‐subpathway signature had prognostic value within subtypes of breast cancer. Our results suggest that the four‐subpathway signature may be a useful biomarker for breast cancer prognosis.  相似文献   

16.
Long non‐coding RNAs (lncRNAs) take various effects in cancer mostly through sponging with microRNAs (miRNAs). lncRNA NR2F1‐AS1 is found to promote tumour progression in hepatocellular carcinoma, endometrial cancer and thyroid cancer. However, the role of lncRNA NR2F1‐AS1 in breast cancer angiogenesis remains unknown. In this study, we found lncRNA NR2F1‐AS1 was positively related with CD31 and CD34 in breast cancer through Pearson's correlation analysis, while lncRNA NR2F1‐AS1 transfection promoted human umbilical vascular endothelial cell (HUVEC) tube formation. In breast cancer cells, lncRNA NR2F1‐AS1 enhanced the HUVEC proliferation, tube formation and migration ability through tumour‐conditioned medium (TCM). In zebrafish model, lncRNA NR2F1‐AS1 increased the breast cancer cell‐related neo‐vasculature and subsequently promoted the breast cancer cell metastasis. In mouse model, lncRNA NR2F1‐AS1 promoted the tumour vessel formation, increased the micro vessel density (MVD) and then induced the growth of primary tumour. Mechanically, lncRNA NR2F1‐AS1 increased insulin‐like growth factor‐1 (IGF‐1) expression through sponging miRNA‐338‐3p in breast cancer cells and then activated the receptor of IGF‐1 (IGF‐1R) and extracellular signal‐regulated kinase (ERK) pathway in HUVECs. These results indicated that lncRNA NR2F1‐AS1 could promote breast cancer angiogenesis through IGF‐1/IGF‐1R/ERK pathway.  相似文献   

17.
18.
Long non‐coding RNA MIR503 host gene (MIR503HG) is located on chromosome Xq26.3, and has been found to be deregulated in many types of human malignancy and function as tumour suppressor or promoter based on cancer types. The role of MIR503HG in breast cancer was still unknown. In our study, we found MIR503HG expression was significantly decreased in triple‐negative breast cancer tissues and cell lines. Furthermore, we observed low MIR503HG expression was correlated with late clinical stage, lymph node metastasis and distant metastasis. In the survival analysis, we observed that triple‐negative breast cancer patients with low MIR503HG expression had a statistically significant worse prognosis compared with those with high MIR503HG expression, and low MIR503HG expression was a poor independent prognostic factor for overall survival in triple‐negative breast cancer patients. The study in vitro suggested MIR503HG inhibits cell migration and invasion via miR‐103/OLFM4 axis in triple negative breast cancer. In conclusion, MIR503HG functions as a tumour suppressive long non‐coding RNA in triple negative breast cancer.  相似文献   

19.
miR‐516a‐3p has been reported to play a suppressive role in several types of human tumours. However, the expression level, biological function and fundamental mechanisms of miR‐516a‐3p in breast cancer remain unclear. In the present study, we found that miR‐516a‐3p expression was down‐regulated and Pygopus2 (Pygo2) expression was up‐regulated in human breast cancer tissues and cells. Through analysing the clinicopathological characteristics, we demonstrated that low miR‐516a‐3p expression or positive Pygo2 expression was a predictor of poor prognosis for patients with breast cancer. The results of a dual luciferase reporter assay and Western blot analysis indicated that Pygo2 was a target gene of miR‐516a‐3p. Moreover, overexpression of miR‐516a‐3p inhibited cell growth, migration and invasion as well as epithelial‐mesenchymal transition (EMT) of breast cancer cells, whereas reduced miR‐516a‐3p expression promoted breast cancer cell growth, migration, invasion and EMT. Furthermore, we showed that miR‐516a‐3p suppressed cell proliferation, metastasis and EMT of breast cancer cells by inhibiting Pygo2 expression. We confirmed that miR‐516a‐3p exerted an anti‐tumour effect by inhibiting the activation of the Wnt/β‐catenin pathway. Finally, xenograft tumour models were used to show that miR‐516a‐3p inhibited breast cancer cell growth and EMT via suppressing the Pygo2/Wnt signalling pathway. Taken together, these results show that miR‐516a‐3p inhibits breast cancer cell growth, metastasis and EMT by blocking the Pygo2/ Wnt/β‐catenin pathway.  相似文献   

20.
Tumor necrosis factor‐alpha (TNFα) induces cancer development and metastasis, which is prominently achieved by nuclear factor‐kappa B (NF‐κB) activation. TNFα‐induced NF‐κB activation enhances cellular mechanisms including proliferation, migration, and invasion. KiSS1, a key regulator of puberty, was initially discovered as a tumor metastasis suppressor. The expression of KiSS1 was lost or down‐regulated in different metastatic tumors. However, it is unclear whether KiSS1 regulates TNFα‐induced NF‐κB activation and further tumor cell migration. In this study, we demonstrate that KiSS1 suppresses the migration of breast cancer cells by inhibiting TNFα‐induced NF‐κB pathway and RhoA activation. Both KiSS1 overexpression and KP10 (kisspeptin‐10) stimulation inhibited TNFα‐induced NF‐κB activity, suppressed TNFα‐induced cell migration and cell attachment to fibronectin in breast cancer cells while KP10 has little effect on cancer cell proliferation. Furthermore, KP10 inhibited TNFα‐induced cell migration and RhoA GTPase activation. Therefore, our data demonstrate that KiSS1 inhibits TNFα‐induced NF‐κB activation via downregulation of RhoA activation and suppression of breast cancer cell migration and invasion. J. Cell. Biochem. 107: 1139–1149, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号