首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O‐linked β‐N‐acetlyglucosamine or O‐GlcNAc modification is a dynamic post‐translational modification occurring on the Ser/Thr residues of many intracellular proteins. The chronic imbalance between phosphorylation and O‐GlcNAc on tau protein is considered as one of the main hallmarks of Alzheimer's disease. In recent years, many studies also showed that O‐GlcNAc levels can elevate upon acute stress and suggested that this might facilitate cell survival. However, many consider chronic stress, including oxidative damage as a major risk factor in the development of the disease. In this study, using the neuronal cell line SH‐SY5Y we investigated the dynamic nature of O‐GlcNAc after treatment with 0.5 mM H2O2 for 30 min. to induce oxidative stress. We found that overall O‐GlcNAc quickly increased and reached peak level at around 2 hrs post‐stress, then returned to baseline levels after about 24 hrs. Interestingly, we also found that tau protein phosphorylation at site S262 showed parallel, whereas at S199 and PHF1 sites showed inverse dynamic to O‐Glycosylation. In conclusion, our results show that temporary elevation in O‐GlcNAc modification after H2O2‐induced oxidative stress is detectable in cells of neuronal origin. Furthermore, oxidative stress changes the dynamic balance between O‐GlcNAc and phosphorylation on tau proteins.  相似文献   

2.
3.
4.
5.
Parkinson's disease (PD) is a progressive neurodegenerative disease, leading to tremor, rigidity, bradykinesia, and gait impairment. Salidroside has been reported to exhibit antioxidative and neuroprotective properties in PD. However, the underlying neuroprotective mechanisms effects of salidroside are poorly understood. Recently, a growing body of evidences suggest that silent information regulator 1 (SIRT1) plays important roles in the pathophysiology of PD. Hence, the present study investigated the roles of SIRT1 in neuroprotective effect of salidroside against N‐methyl‐4‐phenylpyridinium (MPP+)‐induced SH‐SY5Y cell injury. Our findings revealed that salidroside attenuates MPP+‐induced neurotoxicity as evidenced by the increase in cell viability, and the decreases in the caspase‐3 activity and apoptosis ratio. Simultaneously, salidroside pretreatment remarkably increased SIRT1 activity, SIRT1 mRNA and protein levels in MPP+‐treated SH‐SY5Y cell. However, sirtinol, a SIRT1 activation inhibitor, significantly blocked the inhibitory effects of salidroside on MPP+‐induced cytotoxicity and apoptosis. In addition, salidroside abolished MPP+‐induced the production of reactive oxygen species (ROS), the up‐regulation of NADPH oxidase 2 (NOX2) expression, the down‐regulations of superoxide dismutase (SOD) activity and glutathione (GSH) level in SH‐SY5Y cells, while these effects were also blocked by sirtinol. Finally, we found that the inhibition of salidroside on MPP+‐induced phosphorylation of p38, extracellular signal‐regulated kinase (ERK) and c‐Jun NH2‐terminal kinase (JNK) were also reversed by sirtinol in SH‐SY5Y cells. Taken together, these results indicated that SIRT1 contributes to the neuroprotection of salidroside against MPP+‐induced apoptosis and oxidative stress, in part through suppressing of mitogen‐activated protein kinase (MAPK) pathways.  相似文献   

6.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta. Although understanding of the pathogenesis of PD remains incomplete, increasing evidence from human and animal studies has suggested that oxidative stress is an important mediator in its pathogenesis. Astaxanthin (Asx), a potent antioxidant, has been thought to provide health benefits by decreasing the risk of oxidative stress‐related diseases. This study examined the protective effects of Asx on 6‐hydroxydopamine (6‐OHDA)‐induced apoptosis in the human neuroblastoma cell line SH‐SY5Y. Pre‐treatment of SH‐SY5Y cells with Asx suppressed 6‐OHDA‐induced apoptosis in a dose‐dependent manner. In addition, Asx strikingly inhibited 6‐OHDA‐induced mitochondrial dysfunctions, including lowered membrane potential and the cleavage of caspase 9, caspase 3, and poly(ADP‐ribose) polymerase. In western blot analysis, 6‐OHDA activated p38 MAPK, c‐jun NH2‐terminal kinase 1/2, and extracellular signal‐regulated kinase 1/2, while Asx blocked the phosphorylation of p38 MAPK but not c‐jun NH2‐terminal kinase 1/2 and extracellular signal‐regulated kinase 1/2. Pharmacological approaches showed that the activation of p38 MAPK has a critical role in 6‐OHDA‐induced mitochondrial dysfunctions and apoptosis. Furthermore, Asx markedly abolished 6‐OHDA‐induced reactive oxygen species generation, which resulted in the blockade of p38 MAPK activation and apoptosis induced by 6‐OHDA treatment. Taken together, the present results indicated that the protective effects of Asx on apoptosis in SH‐SY5Y cells may be, at least in part, attributable to the its potent antioxidative ability.  相似文献   

7.
8.
Reactive oxygen species (ROS) and oxidative stress have long been linked to cell death of neurons in many neurodegenerative conditions. However, the exact molecular mechanisms triggered by oxidative stress in neurodegeneration are at present unclear. In the current work we have used the human neuroblastoma SH-SY5Y cell line as a model for studying the molecular events occurring after inducing apoptosis with H2O2. We show that treatment of SH-SY5Y cells with H2O2 up-regulates survival pathways during early stages of apoptosis. Subsequently, the decline of anti-apoptotic protein levels leads to the activation of the calcium-dependent proteases calpains and the cysteine proteases caspases. Additionally, we demonstrate that CR-6 (3,4-dihydro-6-hydroxy-7-methoxy-2,2-dimethyl-1(2H)-benzopyran) acts as a scavenger of ROS and prevents apoptosis by enhancing and prolonging up-regulation of survival pathways. Furthermore, we show that pre-treatment of SH-SY5Y cells with a cocktail containing CR-6, the pan-caspase inhibitor zVAD-fmk (zVal-Ala-Asp-fluoro-methylketone) and the calpain inhibitor SJA6017 confers almost total protection against apoptosis. In summary, the present work characterizes the molecular mechanisms involved in oxidative stress-induced apoptosis in SH-SY5Y cells. Our findings highlight the relevance of CR-6, alone or in combination with other drugs, as potential therapeutic strategy for the treatment of neurodegenerative diseases.  相似文献   

9.
In the current study, neuroprotective significance of ellagic acid (EA, a polyohenol) was explored by primarily studying its antioxidant and antiapoptotic potential against arsenic trioxide (As2O3)‐induced toxicity in SH‐SY5Y human neuroblastoma cell lines. The mitigatory effects of EA with particular reference to cell viability and cytotoxicity, the generation of reactive oxygen species, DNA damage, and mitochondrial dynamics were studied. Pretreatment of SH‐SY5Y cells with EA (10 and 20 μM) for 60 min followed by exposure to 2 μM As2O3 protected the SH‐SY5Y cells against the harmful effects of the second. Also, EA pre‐treated groups expressed improved viability, repaired DNA, reduced free radical generation, and maintained altered mitochondrial membrane potential than those exposed to As2O3 alone. EA supplementation also inhibited As2O3‐induced cytochrome c expression that is an important hallmark for determining mitochondrial dynamics. Thus, the current investigations are more convinced for EA as a promising candidate in modulating As2O3‐induced mitochondria‐mediated neuronal toxicity under in vitro system.  相似文献   

10.
11.
12.
13.
14.
15.
Cdk5, a member of the cyclin-dependent kinase (cdk) family, is predominantly active in neurons, where its activity is tightly regulated by the binding of its neuronal activators p35 and p39. Cdk5 is implicated in regulating the proper neuronal function; a deregulation of cdk5 has been found associated with Alzheimer's disease and amyotrophic lateral sclerosis. As oxidative stress products have been seen co-localized with pathological hallmarks of neurodegenerative diseases, we studied the effect of oxidative stress on the cdk5 enzyme in human neuroblastoma IMR-32 cells. We evaluated the effects of 4-hydroxynonenal and Ascorbate plus FeSO(4) on cdk5 activity and on the expression of cdk5 and p35 proteins. We report here that oxidative stress stimulates cdk5 activity and induces an upregulation of its regulatory and catalytic subunit expression in IMR-32 vital cells, showing that the cdk5 enzyme is involved in the signaling pathway activated by oxidative stress.  相似文献   

16.
17.
18.
19.
20.
Eicosapentaenoic acid (EPA), a neuroactive omega‐3 fatty acid, has been demonstrated to exert neuroprotective effects in experimental models of Parkinson's disease (PD), but the cellular mechanisms of protection are unknown. Here, we studied the effects of EPA in fully differentiated human SH‐SY5Y cells and primary mesencephalic neurons treated with MPP+. In both in‐vitro models of PD, EPA attenuated an MPP+‐induced reduction in cell viability. EPA also prevented the presence of electron‐dense cytoplasmic inclusions in SH‐SY5Y cells. Then, possible mechanisms of the neuroprotection were studied. In primary neurons, EPA attenuated an MPP+‐induced increase in Tyrosine‐related kinase B (TrkB) receptors. In SH‐SY5Y cells, EPA down‐regulated reactive oxygen species and nitric oxide. This antioxidant effect of EPA may have been mediated by its inhibition of neuronal NADPH oxidase and cyclo‐oxygenase‐2 (COX‐2), as MPP+ increased the expression of these enzymes. Furthermore, EPA prevented an increase in cytosolic phospholipase A2 (cPLA2), an enzyme linked with COX‐2 in the potentially pro‐inflammatory arachidonic acid cascade. Lastly, EPA attenuated an increase in the bax:bcl‐2 ratio, and cytochrome c release. However, EPA did not prevent mitochondrial enlargement or a decrease in mitochondrial membrane potential. This study demonstrated cellular mechanisms by which EPA provided neuroprotective effects in experimental PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号