首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Obese subjects with the metabolic syndrome (MS+) are more prone to microvascular complications than obese subjects without the metabolic syndrome (MS?). Excessive vascular nitric oxide (NO) production has been demonstrated in MS+ compared to MS?, perhaps driven by increased inflammation or oxidative stress. We tested whether in MS+, folic acid (FA) treatment could normalize NO synthase (NOS)‐dependence of vascular tone in the retina and kidney. MS+ (n = 49) and MS? (n = 26) subjects were included in a randomized, double‐blind, crossover trial. After 4‐weeks' treatment with placebo or FA (5 mg/day), several cytokines (C‐reactive protein (CRP), interleukin‐1β, adiponectin), and markers of oxidative stress (glutathione/oxidized glutathione (GSH/GSSG) ratio, total antioxidant capacity (TAC)) were determined. NOS‐dependence of retinal and renal vascular tone was assessed by retinal scanning laser Doppler flowmetry and renal clearance technique, respectively. FA had no effect on cytokine levels, but increased GSH/GSSG ratio overall (36 ± 76 vs. 102 ± 200, P = 0.04), indicative of a reduction in oxidative stress. In MS+, treatment with FA reduced NOS‐dependence of retinal and renal vascular tone compared to placebo (P = 0.03 and P = 0.04, respectively). FA had no effect in MS?. After treatment with FA, NOS‐dependence of retinal and renal vascular tone was similar between MS+ and MS?. Retinal and renal vascular tone in MS+ subjects is characterized by increased dependence on NOS. NOS‐dependence in MS+ could be corrected by FA treatment to levels not dissimilar in MS?, and this was associated with a reduction in oxidative stress. Future trials should test whether these effects translate into a reduction of microvascular complications.  相似文献   

2.
Nicotinamide N‐methyltransferase (NNMT, E.C. 2.1.1.1) catalyses the N‐methylation of nicotinamide to 1‐methylnicotinamide (MeN). We have previously shown that the ectopic expression of NNMT in SH‐SY5Y human neuroblastoma cells increased adenosine triphosphate synthesis and complex I activity, effects of which were replicated by the addition of MeN. In this study, we investigated whether NNMT expression in SH‐SY5Y conferred protection against mitotoxicity induced by rotenone, potassium cyanide (KCN), 2,4‐dinitrophenol, and 6‐hydroxydopamine, and whether any effects observed were mediated via increased MeN production. NNMT expression abolished the toxic effects of KCN, 2,4‐dinitrophenol, and 6‐hydroxydopamine, and reduced that of rotenone. In contrast, although MeN significantly reduced the toxicity of rotenone, it had no effect upon the toxicity of KCN, 2,4‐dinitrophenol, and 6‐hydroxydopamine. These data show that NNMT is cytoprotective against toxins that inhibit various aspects of mitochondrial function, and that these are not mediated solely via increased MeN production, but in combination with other unidentified mechanisms. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:451‐456, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21508  相似文献   

3.
Pyrrolizidine alkaloid (PA) clivorine, isolated from traditional Chinese medicinal plant Ligularia hodgsonii Hook, has been shown to induce apoptosis in hepatocytes via mitochondrial‐mediated apoptotic pathway in our previous research. The present study was designed to observe the protection of N‐acetyl‐cysteine (NAC) on clivorine‐induced hepatocytes apoptosis. Our results showed that 5 mM NAC significantly reversed clivorine‐induced cytotoxicity via MTT and Trypan Blue staining assay. DNA apoptotic fragmentation analysis and Western‐blot results showed that NAC decreased clivorine‐induced apoptotic DNA ladder and caspase‐3 activation. Further results showed that NAC inhibited clivorine‐induced Bcl‐xL decrease, mitochondrial cytochrome c release and caspase‐9 activation. Intracellular glutathione (GSH) is an important ubiquitous redox‐active reducing sulfhydryl (? SH) tripeptide, and our results showed that clivorine (50 µM) decreased cellular GSH amounts and the ratio of GSH/GSSG in the time‐dependent manner, while 5 mM NAC obviously reversed this depletion. Further results showed that GSH synthesis inhibitor BSO augmented clivorine‐induced cytotoxicity, while exogenous GSH reversed its cytotoxicity on hepatocytes. Clivorine (50 µM) significantly induced cellular reactive oxygen species (ROS) generation. Further results showed that 50 µM Clivorine decreased glutathione peroxidase (GPx) activity and increased glutathione S transferase (GST) activity, which are both GSH‐related antioxidant enzymes. Thioredoxin‐1 (Trx) is also a ubiquitous redox‐active reducing (? SH) protein, and clivorine (50 µM) decreased cellular expression of Trx in a time‐dependent manner, while 5 mM NAC reversed this decrease. Taken together, our results demonstrate that the protection of NAC is major via maintaining cellular reduced environment and thus prevents clivorine‐induced mitochondrial‐mediated hepatocytes apoptosis. J. Cell. Biochem. 108: 424–432, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
This study was undertaken to investigate the association among BMI and lipid hydroperoxide (LH), total antioxidant status (TAS), superoxide dismutase (SOD), and reduced glutathione (GSH). Ninety (n = 90) healthy males and females (n = 23/67) (29 normal weight (BMI: 22.74 ± 0.25 kg/m2), 36 overweight (BMI: 27.18 ± 0.23 kg/m2), and 25 obese (33.78 ± 0.48 kg/m2)) participated in the study. Data collected included anthropometric measures, fasting blood glucose, lipid profile, LH, TAS, and enzymatic antioxidants (SOD, and reduced GSH). The results of the study showed that obese individuals had significantly increased LH levels compared to normal‐weight individuals (obese vs. normal weight (0.88 ± 0.05 vs. 0.67 ± 0.03 µmol/l, P < 0.01)) but the increased levels were not significantly different when compared to the overweight group (obese vs. overweight (0.88 ± 0.05 vs. 0.79 ± 0.05 µmol/l)). No other consistent significant differences in TAS, SOD, and GSH were identified between groups. This study concluded that only obesity and not moderate overweight elevates LH levels. Furthermore, the levels of TAS, SOD, and GSH in obesity do not explain the increased LH levels observed in obesity.  相似文献   

5.
The active outward translocation of phospholipid analogues from the inner to the outer membrane leaflet of human erythrocytes by the multi-drug resistance protein MRP1 (ABCC1) depends on intracellular reduced glutathione (GSH). Entrapment of ATP and increasing amounts of GSH inside resealed ghosts prepared from erythrocytes resulted in an up to six-fold increase of the translocation rate. Entrapped oxidized glutathione (GSSG) acted inhibitory but produced stimulation after addition of the disulphide-reducing reagent dithioerythritol. Modification of GSH by esterification of the C-terminal carboxylate of Gly, removal of the N-terminal Glu or substitution of the SH group by an anionic S-dicarboxyethyl or sulphonate group abolished stimulation. The effect of S-alkylation of GSH depended on the length of the alkyl group. S-methyl GSH was somewhat more effective than GSH, but maximal stimulation was similar. S-butyl GSH acted poorly stimulatory while S-hexyl GSH was essentially ineffective. Analyses of the kinetic data of translocation revealed Km values for GSH and methyl-GSH of respectively 7.4±2.4 and 4.9±1.1 mmol l?1. At high GSH levels and defined constant ATP levels using an ATP-regenerating system, the Km for ATP of the outward translocation was 0.16±0.02 mmol l?1. In the same system lacking GSH, the Km for ATP of the inward translocation by the aminophospholipid flippase was 0.53±0.23 mmol l?1.  相似文献   

6.
Objective : To evaluate the short‐term impact of portion‐controlled food provision in combination with an Internet behavioral weight loss program on weight, blood cholesterol, and blood glucose levels. Design and Methods : Fifty participants, mean age 46 ± 10.7 years and mean body mass index 35.1 ± 3.8 kg/m2, were randomized to one of two study groups, an Internet behavioral weight loss program (Internet‐alone; n = 25) or an Internet behavioral weight loss program plus a commercially available portion‐controlled diet (Internet + PCD; n = 25) for 12 weeks. Results : An intent‐to‐treat analysis found that the mean weight change in the Internet + PCD group was ?5.7 ± 5.6 kg and in the Internet‐alone group (n = 25) was ?4.1 ± 4.0 kg (P = 0.26). Participants in the Internet + PCD group achieved significantly greater improvements in blood glucose (?2.6 ± 5.7 vs. 1.4 ± 11.0 mg/dl; P = 0.05) and LDL cholesterol (?8.2 ± 18.0 vs. ?0.6 ± 21.0 mg/dl; P = 0.04), compared with Internet‐alone group. Conclusions : These data suggest that there may be short‐term clinical benefit in using a PCD in conjunction with a behavioral Internet‐based weight loss program to enhance weight loss and improve health indicators.  相似文献   

7.
To determine if short‐term calorie restriction reverses vascular endothelial dysfunction in old mice, old (O, n = 30) and young (Y, n = 10) male B6D2F1 mice were fed ad libitum (AL) or calorie restricted (CR, approximately 30%) for 8 weeks. Ex vivo carotid artery endothelium‐dependent dilation (EDD) was impaired in old ad libitum (OAL) vs. young ad libitum (YAL) (74 ± 5 vs. 95 ± 2% of maximum dilation, P < 0.05), whereas old calorie‐restricted (OCR) and YCR did not differ (96 ± 1 vs. 94 ± 3%). Impaired EDD in OAL was mediated by reduced nitric oxide (NO) bioavailability associated with decreased endothelial NO synthase expression (aorta) (P < 0.05), both of which were restored in OCR. Nitrotyrosine, a cellular marker of oxidant modification, was markedly elevated in OAL (P < 0.05), whereas OCR was similar to Y. Aortic superoxide production was 150% greater in OAL vs. YAL (P < 0.05), but normalized in OCR, and TEMPOL, a superoxide dismutase (SOD) mimetic that restored EDD in OAL (to 97 ± 2%), had no effect in Y or OCR. OAL had increased expression and activity of the oxidant enzyme, NADPH oxidase, and its inhibition (apocynin) improved EDD, whereas NADPH oxidase in OCR was similar to Y. Manganese SOD activity and sirtuin1 expression were reduced in OAL (P < 0.05), but restored to Y in OCR. Inflammatory cytokines were greater in OAL vs. YAL (P < 0.05), but unaffected by CR. Carotid artery endothelium‐independent dilation did not differ among groups. Short‐term CR initiated in old age reverses age‐associated vascular endothelial dysfunction by restoring NO bioavailability, reducing oxidative stress (via reduced NADPH oxidase–mediated superoxide production and stimulation of anti‐oxidant enzyme activity), and upregulation of sirtuin‐1.  相似文献   

8.
Human glucagon‐like peptide‐1 (hGLP‐1) and its mimetics have emerged as therapies for type 2 diabetes. However, clinical treatment of diabetes with hGLP‐1 is ineffective because of rapid DPPIV‐mediated hGLP‐1 degradation in the circulation. In this study, we investigated the protective effect of recombinant human glucagon‐like peptide‐1 (rhGLP‐1) treatment on STZ‐induced diabetic mice. Mice were treated daily with rhGLP‐1 (24 nmol/kg body weight) starting before or after STZ injection (40 mg/kg body weight) to induce diabetes. Mice pretreated with rhGLP‐1 before but not after STZ showed significantly reduced blood glucose levels (P < 0.05), increased oral glucose tolerance (area under the curve, 1740 ± 71.18 vs 2416 ± 205.6, P < 0.05). Furthermore, the bioproduct of lipid peroxidation, MDA, was reduced and SOD and GSH‐PX activities were enhanced globally and in pancreas of mice that received rhGLP‐1 pretreatment before STZ, when comparing with STZ‐treated mice. Finally, STZ‐induced pancreatic islet damage was rescued by rhGLP‐1 pretreatment. Taken together, the results of this study demonstrate that rhGLP‐1 pretreatment has a protective effect against STZ‐induced diabetes in mice. These findings suggest that the GLP‐1 pretreatment may be a new therapeutic strategy in the preventive and protective treatment during diabetes initiation and progression. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
In previous studies, we have shown that cerebral hypoxia results in increased activity of caspase-9, the initiator caspase, and caspase-3, the executioner of programmed cell death. We have also shown that cerebral hypoxia results in high affinity Ca2+–ATPase-dependent increase in nuclear Ca2+-influx in the cerebral cortex of newborn piglets. The present study tests the hypothesis that inhibiting nuclear Ca2+-influx by pretreatment with clonidine, an inhibitor of high affinity Ca2+–ATPase, will prevent the hypoxia-induced increase in caspase-9 and caspase-3 activity in the cerebral cortex of newborn piglets. Thirteen newborn piglets were divided into three groups, normoxic (Nx, n = 4), hypoxic (Hx, n = 4), and hypoxic treated with clonidine (100 mg/kg) (Hx–Cl, n = 5). Anesthetized, ventilated animals were exposed to an FiO2 of 0.21 (Nx) or 0.07 (Hx) for 60 min. Cerebral tissue hypoxia was documented biochemically by determining levels of ATP and phosphocreatine (PCr). Caspase-9 and -3 activity were determined spectrofluoro-metrically using specific fluorogenic synthetic substrates. ATP (μmoles/g brain) was 4.6 ± 0.3 in Nx, 1.7±0.4 in Hx (P < 0.05 vs. Nx), and 1.5 ± 0.2 in Hx–Cl (P < 0.05 vs. Nx). PCr (μmoles/g brain) was 3.6 ± 0.4 in Nx, 1.1 ± 0.3 in Hx (P < 0.05 vs. Nx), and 1.0 ± 0.2 in Hx–Cl (P < 0.05 vs. Nx). Caspase-9 activity (nmoles/mg protein/h) was 0.548 ± 0.0642 in Nx and increased to 0.808 ± 0.080 (P < 0.05 vs. Nx and Hx–Cl) in the Hx and 0.562 ± 0.050 in the Hx–Cl group (p = NS vs. Nx). Caspase-3 activity (nmoles/mg protein/h) was 22.0 ± 1.3 in Nx and 32 ± 6.3 in Hx (P < 0.05 vs. Nx) and 18.8 ± 3.2 in the Hx–Cl group (P < 0.05 vs. Hx). The data demonstrate that clonidine administration prior to hypoxia prevents the hypoxia-induced increase in the activity of caspase-9 and caspase-3. We conclude that the high afinity Ca2+–ATPase-dependent increased nuclear Ca2+ during hypoxia results in increased caspase-9 and caspase-3 activity.  相似文献   

10.
This study tests the hypothesis that a high‐fat postnatal diet increases fat mass and reduces improved insulin sensitivity (IS) found in the low‐protein model of maternal undernutrition. Offspring from Wistar dams fed either a 20% (control (CON)) or 8% (low protein (LP)) protein diet during gestation and lactation were randomly assigned to a control (con) or cafeteria (caf) diet at weaning (21 days) until 3 months of age at which point IS was measured (hyperinsulinemic–euglycemic clamp). Fat mass, growth, energy intake (EI) and expenditure (EE), fuel utilization, insulin secretion, and leptin and adiponectin levels were measured to identify a possible role in any changes in IS. IS was increased in LP‐con in comparison to CON‐con animals. Cafeteria feeding prevented this increase in LP animals but had no effect in CON animals (insulin‐stimulated glucose infusion rates (GIRs; mg/min/kg); CON‐con: 13.9 ± 1.0, CON caf: 12.1 ± 2.1, LP‐con: 25.4 ± 2.0, LP‐caf: 13.7 ± 3.7, P < 0.05). CON‐caf animals had similar percent epididymal white adipose tissue (%EWAT; CON‐con: 1.71 ± 0.09 vs. CON‐caf: 1.66 ± 0.08) and adiponectin (µg/ml: CON‐con: 4.61 ± 0.34 vs. CON‐caf: 3.67 ± 0.18) except hyperinsulinemia and relative hyperleptinemia in comparison to CON‐con. Differently, LP‐caf animals had increased %EWAT (LP‐con: 1.11 ± 0.06 vs. LP‐caf: 1.44 ± 0.08, P < 0.05) and adiponectin (µg/ml: LP‐con: 5.38 ± 0.39 vs. LP‐caf: 3.75 ± 0.35, P < 0.05) but did not show cafeteria‐induced hyperinsulinemia or relative hyperleptinemia. An increased propensity to store visceral fat in LP animals may prevent the elevated IS in LP offspring.  相似文献   

11.
We investigated if IRFI 042, an analog of vitamin E, protects the brain against oxidative stress induced by intraperitoneal administration of Kainic acid (KA) (10 mg/kg); sham brain injury rats were used as controls. Animals received either IRFI 042 (20 mg/kg) or its vehicle 30 min before KA injection and after 6 h were sacrificed to measure malonildyaldheide (MDA) and glutathione levels (GSH) in the diencephalon. Behavioral changes were also monitored. Intraperitoneal administration of IRFI decreased MDA (micromol/g wet tissue: KA + vehicle = 22.5 ± 4.2; KA + IRFI = 17.1 ± 1; P < 0.005) and prevented GSH loss (nmol/g wet tissue: KA + vehicle = 0.41 ± 0.1; KA + IRFI = 1.86 ± 0.2; P < 0.005) in the diencephalon. The latency of occurrence of behavioral signs increased from 39 ± 1 to 62 ± 6 min in IRFI 042 group. The data suggest that IRFI 042 might protect against KA‐induced oxidative stress.  相似文献   

12.
Visceral adipose tissue (VAT) is associated with increased risk for cardiovascular disease, and therefore, accurate methods to estimate VAT have been investigated. Computerized tomography (CT) is the gold standard measure of VAT, but its use is limited. We therefore compared waist measures and two dual‐energy X‐ray absorptiometry (DXA) methods (Ley and Lunar) that quantify abdominal regions of interest (ROIs) to CT‐derived VAT in 166 black and 143 white South African women. Anthropometry, DXA ROI, and VAT (CT at L4–L5) were measured. Black women were younger (P < 0.001), shorter (P < 0.001), and had higher body fat (P < 0.05) than white women. There were no ethnic differences in waist (89.7 ± 18.2 cm vs. 90.1 ± 15.6 cm), waist:height ratio (WHtR, 0.56 ± 0.12 vs. 0.54 ± 0.09), or DXA ROI (Ley: 2.2 ± 1.5 vs. 2.1 ± 1.4; Lunar: 2.3 ± 1.4 vs. 2.3 ± 1.5), but black women had less VAT, after adjusting for age, height, weight, and fat mass (76 ± 34 cm2 vs. 98 ± 35 cm2; P < 0.001). Ley ROI and Lunar ROI were correlated in black (r = 0.983) and white (r = 0.988) women. VAT correlated with DXA ROI (Ley: r = 0.729 and r = 0.838, P < 0.01; Lunar: r = 0.739 and r = 0.847, P < 0.01) in black and white women, but with increasing ROI android fatness, black women had less VAT. Similarly, VAT was associated with waist (r = 0.732 and r = 0.836, P < 0.01) and WHtR (r = 0.721 and r = 0.824, P < 0.01) in black and white women. In conclusion, although DXA‐derived ROIs correlate well with VAT as measured by CT, they are no better than waist or WHtR. Neither DXA nor anthropometric measures are able to accurately distinguish between high and low levels of VAT between population groups.  相似文献   

13.
Obesity causes increased morbidity and mortality from metabolic and cardiovascular disease (CVD). We investigated the effect of bariatric surgery on endothelial dysfunction (ED) in retinal vessels as a marker of metabolic and cardiovascular risk in patients with obesity WHO III. Thirty consecutive patients (19/11, w/m) were evaluated by anthropometry, lipid profile, and oral glucose tolerance test before and after bariatric surgery (Mannheim Obesity Study (MOS); NCT 00770276). Risk stratification was performed by the presence of metabolic syndrome (MetS) according to ATP‐III (adult treatment panel‐III). Subclinical atherosclerosis was assessed by measurement of intima‐media thickness (IMT). Flicker light response of retinal vessels was used as measures of ED. We measured their arteriole‐to‐venule ratio (AVR) for evaluation of vascular pathology. After a median of 9 months following bariatric surgery, mean weight loss was 39.4 kg (37.3%). Remission of impaired glucose metabolism was achieved in 53.3% of affected patients. Dyslipidemia improved significantly (triglycerides ?61.3 mg/dl, P < 0.0001, total cholesterol ?28.2 mg/dl, P = 0.002, and low‐density lipoprotein cholesterol were reduced ?24.5 mg/dl, P = 0.008). This resulted in a significant reduction of patients classified for MetS (27 vs. 9, P < 0.0001). Adiponectin increased by 2.08 µg/l (P = 0.032) and high sensitivity C‐reactive protein (hs‐CRP) and soluble intercellular cell adhesion molecule (sICAM) decreased (?7.3 mg/l, P < 0.0001 and ?146.4 ng/ml, P = 0.0006). AVR improved significantly (+0.04, P < 0.0001), but neither Flicker light response nor IMT changed significantly. Retinal AVR is ameliorated after bariatric intervention. As an increased AVR results from either or both widening retinal arteriolar caliber and narrowing retinal venular caliber, an improvement in small vessel profile is evident 9 months after bariatric surgery.  相似文献   

14.
In order to investigate the improvement of insulin resistance and cardiac autonomic function along massive weight loss, 12 obese women were evaluated before, and 3 and 12 months after Roux‐en‐Y gastric bypass. The 12‐month values were compared to those of BMI‐matched controls. Insulin sensitivity was assessed by euglycemic clamp and the cardiac autonomic function by the analysis of the Heart Rate Variability (HRV). After surgery, glucose uptake progressively increased from 4.3 ± 0.5 mg/kg lean body mass (LBM)/min preoperative (pre‐op) to 4.9 ± 0.5 and 7.0 ± 0.5, 3‐ and 12‐month postoperative (post‐op) (P = 0.04 and P = 0.006 vs. pre‐op), whereas the cardiac autonomic function showed a biphasic pattern. HRV values increased 3 months post‐op, and decreased at 12 months, thus indicating an early sympathetic withdrawal followed by a later reactivation (e.g., the standard deviation of the normal‐to‐normal intervals was 116 ± 7 ms in pre‐op, 161 ± 10 at 3 months, P = 0.008 vs. pre‐op, and 146 ± 15 at 12 months, P = 0.03 vs. pre‐op and P = 0.02 vs. 3 m). Insulin sensitivity was significantly related to body weight (P = 0.02), whereas the cardiac indexes were significantly linked to the profile of energy intake (e.g., HRV triangular index vs. energy intake P = 0.003). No significant relationship linked insulin sensitivity to the cardiac autonomic indexes. Insulin sensitivity and cardiac parameters of the 12‐month post‐op patients were similar to their matched controls. During massive weight loss, the cardiac autonomic deregulation and insulin resistance improved concomitantly but independently from each other. Our results suggest that the extent of the improvement is associated with the final body weight.  相似文献   

15.
Increase in 4‐hydroxy‐2‐nonenal (4HNE) due to oxidative stress has been observed in a variety of cardiac diseases such as diabetic cardiomyopathy. 4HNE exerts a damaging effect in the myocardium by interfering with subcellular organelles like mitochondria by forming adducts. Therefore, we hypothesized that increased 4HNE adduct formation in the heart results in proteasome inactivation in isoproterenol (ISO)‐infused type 1 diabetes mellitus (DM) rats. Eight‐week‐old male Sprague Dawley rats were injected with streptozotocin (STZ, 65 mg kg?1). The rats were infused with ISO (5 mg kg?1) for 2 weeks by mini pumps, after 8 weeks of STZ injection. We studied normal control (n = 8) and DM + ISO (n = 10) groups. Cardiac performance was assessed by echocardiography and Millar catheter at the end of the protocol at 20 weeks. Initially, we found an increase in 4HNE adducts in the hearts of the DM + ISO group. There was also a decrease in myocardial proteasomal peptidase (chymotrypsin and trypsin‐like) activity. Increases in cardiomyocyte area (446 ± 32·7 vs 221 ± 10·83) (µm2), per cent area of cardiac fibrosis (7·4 ± 0·7 vs 2·7 ± 0·5) and cardiac dysfunction were also found in DM + ISO (P < 0·05) relative to controls. We also found increased 4HNE adduct formation on proteasomal subunits. Furthermore, reduced aldehyde dehydrogenase 2 activity was observed in the myocardium of the DM + ISO group. Treatment with 4HNE (100 μM) for 4 h on cultured H9c2 cardiomyocytes attenuated proteasome activity. Therefore, we conclude that the 4HNE‐induced decrease in proteasome activity may be involved in the cardiac pathology in STZ‐injected rats infused with ISO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In cultured cells, palmitic acid (PA) and oleic acid (OA) confer distinct metabolic effects, yet, unclear, is whether changes in dietary fat intake impact cellular fatty acid (FA) composition. We hypothesized that short‐term increases in dietary PA or OA would result in corresponding changes in the FA composition of skeletal muscle diacylglycerol (DAG) and triacylglycerol (TAG) and/or the specific FA selected for β‐oxidation. Healthy males (N = 12) and females (N = 12) ingested a low‐PA diet for 7 days. After fasting measurements of the serum acylcarnitine (AC) profile, subjects were randomized to either high‐PA (HI PA) or low‐PA/high‐OA (HI OA) diets. After 7 days, the fasting AC measurement was repeated and a muscle/fat biopsy obtained. FA composition of intramyocellular DAG and TAG and serum AC was measured. HI PA increased, whereas HI OA decreased, serum concentration of 16:0 AC (P < 0.001). HI OA increased 18:1 AC (P = 0.005). HI PA was associated with a higher PA/OA ratio in muscle DAG and TAG (DAG: 1.03 ± 0.24 vs. 0.46 ± 0.08, P = 0.04; TAG: 0.63 ± 0.07 vs. 0.41 ± 0.03, P = 0.01). The PA concentration in the adipose tissue DAG (µg/mg adipose tissue) was 0.17 ± 0.02 in those receiving the HI PA diet (n = 6), compared to 0.11 ± 0.02 in the HI oa group (n = 4) (P = 0.067). The relative PA concentration in muscle DAG and TAG and the serum palmitoylcarnitine concentration was higher in those fed the high‐PA diet.  相似文献   

17.

Objective:

Obesity is frequently associated with obstructive sleep apnea (OSA). Both conditions are proinflammatory and proposed to deteriorate cardiac function. We used a nested cohort study design to evaluate the long‐term impact of bariatric surgery on OSA and how weight loss and OSA relate to inflammation and cardiac performance.

Design and Methods:

At 10‐year follow‐up in the Swedish Obese Subjects (SOS) study, we identified 19 obese subjects (BMI 31.2 ± 5.3 kg m?2), who following bariatric surgery at SOS‐baseline had displayed sustained weight losses (surgery group), and 20 obese controls (BMI 42.0 ± 6.2 kg m?2), who during the same time‐period had maintained stable weight (control group). All study participants underwent overnight polysomnography examination, echocardiography and analysis of inflammatory markers.

Results:

The surgery group displayed a lower apnea hypopnea index (AHI) (19.9 ± 21.5 vs. 37.8 ± 27.7 n/h, P = 0.013), lower inflammatory activity (hsCRP 2.3 ± 3.0 vs. 7.2 ± 5.0 mg L?1, P < 0.001), reduced left ventricular mass (165 ± 22 vs. 207 ± 22 g, P < 0.001) and superior left ventricular diastolic function (E/A ratio 1.24 ± 1.10 vs. 1.05 ± 0.20, P = 0.006) as compared with weight stable obese controls. In multiple regression analyses including all subjects (n = 39) and controlling for BMI, the AHI remained independently associated with hsCRP (β = 0.09, P < 0.001), TNF‐α (β = 0.03, P = 0.031), IL‐6 (β = 0.01, P = 0.007), IL 10 (β = ?0.06; P = 0.018), left ventricular mass (β = 0.64, P < 0.001), left atrial area (β = 0.08, P = 0.002), pulmonary artery pressure (β = 0.08, P = 0.011) and E/Ea ratio (β = 0.04, P = 0.021).

Conclusions:

Patients with sustained weight loss after bariatric surgery display less severe sleep apnea, reduced inflammatory activity, and enhanced cardiac function. Persisting sleep apnea appears to limit the beneficial effect of weight loss on inflammation and cardiac performance.
  相似文献   

18.
Green tea is purported to promote weight loss. Resting metabolic rate (RMR) and the thermic effect of feeding (TEF) are significant components of total daily energy expenditure and are partially determined by the sympathetic nervous system via catecholamine‐mediated stimulation of β‐adrenergic receptors. Epigallocatechin‐3‐gallate (EGCG: the most bioactive catechin in green tea) inhibits catechol‐O‐methyltransferase, an enzyme contributing to the degradation of catecholamines. Accordingly, we hypothesized that short‐term consumption of a commercially available EGCG supplement (Teavigo) augments RMR and TEF. On two separate occasions, seven placebo or seven EGCG capsules (135 mg/capsule) were administered to 16 adults (9 males, 7 females, age 25 ± 2 years, BMI 24.6 ± 1.2 kg/m2 (mean ± s.e.)). Capsules (three/day) were consumed over 48 h; the final capsule was consumed 2 h prior to visiting the laboratory. Energy expenditure (ventilated hood technique) was determined at rest and for 5 h following ingestion of a liquid meal (caloric content: 40% RMR). Contrary to our hypothesis, RMR was not greater (P = 0.10) following consumption of EGCG (6,740 ± 373 kJ/day) compared with placebo (6,971 ± 352). Similarly, the area under the TEF response curve (Δ energy expenditure) was also unaffected by EGCG (246,808 ± 23,748 vs. 243,270 ± 22,177 kJ; P = 0.88). EGCG had no effect on respiratory exchange ratio at rest (P = 0.29) or throughout the TEF measurement (P = 0.56). In summary, together RMR and TEF may account for up to 85% of total daily energy expenditure; we report that short‐term consumption of a commercially available EGCG supplement did not increase RMR or TEF.  相似文献   

19.
20.
The present study investigates the correlation between the hypoxia-induced phosphorylation of cyclic AMP response element binding protein and the expression of apoptotic proteins (proapoptotic proteins Bax and Bad and antiapoptotic proteins Bcl-2 and Bcl-xl) during hypoxia in the cerebral cortex of newborn piglets. Piglets were divided into normoxic (Nx) and hypoxic (Hx, FiO2 = 0.06 for 1 h) groups. Cerebral tissue hypoxia was documented by ATP and phosphocreatine (PCr) levels. Ser133 phosphorylation of cyclic AMP response element binding (CREB) protein was determined by Western blot analysis using a specific anti-phosphorylated Ser133-CREB protein antibody. The expression of apoptotic proteins was determined by using specific anti-Bax, anti-Bad, anti-Bcl-2 and anti-Bcl-xl antibodies. ATP and PCr values (μmoles/g brain) in Hx were significantly different from Nx (ATP: 4.40 ± 0.39 in Nx vs. 1.19 ± 0.44 in Hx, P < 0.05 vs. Nx; PCr: 3.60 ± 0.40 in Nx vs. 0.70 ± 0.31 in Hx, P < 0.05 vs. Nx). Ser133 phosphorylated CREB protein (OD × mm2) was 74.55 ± 4.75 in Nx and 127.13 ± 19.36 in Hx (P < 0.05 vs. Nx). The expression of proapoptotic proteins Bax and Bad increased and strongly correlated with the increase in CREB protein phosphorylation (correlation coefficient r = 0.82 and r = 0.85, respectively). The expression of antiapoptotic proteins Bcl-2 and Bcl-xl did not show correlation with CREB protein phosphorylation. We conclude that cerebral hypoxia results in differential regulation of CREB protein-mediated expression of proapoptotic and antiapoptotic proteins in the cerebral cortex of newborn piglets. We propose that the increased expression of proapoptotic vs antiapoptotic genes will lead to an increased potential for apoptotic programmed cell death in the Hx newborn brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号