首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Receptor activator NF‐κB ligand (RANKL)‐activated signaling is essential for osteoclast differentiation, activation and survival. Caffeic acid phenethyl ester (CAPE), a natural NF‐κB inhibitor from honeybee propolis has been shown to have anti‐tumor and anti‐inflammatory properties. In this study, we investigated the effect of CAPE on the regulation of RANKL‐induced osteoclastogenesis, bone resorption and signaling pathways. Low concentrations of CAPE (<1 µM) dose dependently inhibited RANKL‐induced osteoclastogenesis in RAW264.7 cell and bone marrow macrophage (BMM) cultures, as well as decreasing the capacity of human osteoclasts to resorb bone. CAPE inhibited both constitutive and RANKL‐induced NF‐κB and NFAT activation, concomitant with delayed IκBα degradation and inhibition of p65 nuclear translocation. At higher concentrations, CAPE induced apoptosis and caspase 3 activities of RAW264.7 and disrupts the microtubule network in osteoclast like (OCL) cells. Taken together, our findings demonstrate that inhibition of NF‐κB and NFAT activation by CAPE results in the attenuation of osteoclastogenesis and bone resorption, implying that CAPE is a potential treatment for osteolytic bone diseases. J. Cell. Physiol. 221: 642–649, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Plastic polarization of macrophage is involved in tumorigenesis. M1‐polarized macrophage mediates rapid inflammation, entity clearance and may also cause inflammation‐induced mutagenesis. M2‐polarized macrophage inhibits rapid inflammation but can promote tumour aggravation. ω‐3 long‐chain polyunsaturated fatty acid (PUFA)‐derived metabolites show a strong anti‐inflammatory effect because they can skew macrophage polarization from M1 to M2. However, their role in tumour promotive M2 macrophage is still unknown. Resolvin D1 and D2 (RvD1 and RvD2) are docosahexaenoic acid (DHA)‐derived docosanoids converted by 15‐lipoxygenase then 5‐lipoxygenase successively. We found that although dietary DHA can inhibit prostate cancer in vivo, neither DHA (10 μmol/L) nor RvD (100 nmol/L) can directly inhibit the proliferation of prostate cancer cells in vitro. Unexpectedly, in a cancer cell‐macrophage co‐culture system, both DHA and RvD significantly inhibited cancer cell proliferation. RvD1 and RvD2 inhibited tumour‐associated macrophage (TAM or M2d) polarization. Meanwhile, RvD1 and RvD2 also exhibited anti‐inflammatory effects by inhibiting LPS‐interferon (IFN)‐γ‐induced M1 polarization as well as promoting interleukin‐4 (IL‐4)‐mediated M2a polarization. These differential polarization processes were mediated, at least in part, by protein kinase A. These results suggest that regulation of macrophage polarization using RvDs may be a potential therapeutic approach in the management of prostate cancer.  相似文献   

4.
Cytokines/chemokines are key players in cancer‐related inflammation. Increasing evidence suggests that chemokines produced by tumor cells are the mediators of metastasis. Thus, agents that can downregulate chemokines expression have potential against cancer metastasis. We have previously shown inhibition of ovarian and endometrial cancer cell growth with progesterone and calcitriol. In the present study, we evaluated the effect of these two agents on the expression of inflammatory genes. Using a RT‐PCR array of inflammatory cytokines/chemokines and their receptors, we found a marked attenuation of CXCL1 and CXCL2 (GRO‐α and ‐β) in cancer cells by both treatments. Knockdown of NFκB resulted in a reduced expression of CXCL1 and CXCL2 and the inhibitory effect of progesterone and calcitriol on the expression of chemokines was abrogated in NFκB‐silenced cancer cells. Silencing of IκBα increased the expression of CXCL1 and CXCL2 in cancer cells, which can be attributed to the increased activation of NFκB‐p65, caused by the lack of its inhibitor. Progesterone and calcitriol‐induced inhibition was abolished in IκBα‐knockdown cells. Our results demonstrate that suppression of IκBα phosphorylation by progesterone and calcitriol contributes to the reduced expression of CXCL1 and CXCL2. Downregulation of CXCL1 and CXCL2 was associated with a marked inhibition of metastasis‐promoting genes. Overall, our results indicate that progesterone and calcitriol inhibit IκBα phosphorylation, NFκB activation, and the expression of NFκB regulated metastasis promoting genes. These results provide attractive data for the possible use of progesterone and calcitriol in the management of endometrial and ovarian tumors. J. Cell. Biochem. 113: 3143–3152, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
6.
Non‐tuberculous mycobacteria (NTM), also known as an environmental and atypical mycobacteria, can cause the chronic pulmonary infectious diseases. Macrophages have been suggested as the main host cell to initiate the innate immune responses to NTM infection. However, the molecular mechanism to regulate the antimicrobial immune responses to NTM is still largely unknown. Current study showed that the NTM clinical groups, Mycobacterium abscessus and Mycobacterium smegmatis, significantly induced the M1 macrophage polarization with the characteristic production of nitric oxide (NO) and marker gene expression of iNOS, IFNγ, TNF‐α, IL1‐β and IL‐6. Interestingly, a non‐histone nuclear protein, HMGN2 (high‐mobility group N2), was found to be spontaneously induced during NTM‐activated M1 macrophage polarization. Functional studies revealed that HMGN2 deficiency in NTM‐infected macrophage promotes the expression of M1 markers and the production of NO via the enhanced activation of NF‐κB and MAPK signalling. Further studies exhibited that HMGN2 knock‐down also enhanced IFNγ‐induced M1 macrophage polarization. Finally, we observed that silencing HMGN2 affected the survival of NTM in macrophage, which might largely relevant to enhanced macrophage polarization into M1 phenotype under the NTM infection. Collectively, current studies thus suggested a novel function of HMGN2 in regulating the anti‐non‐tuberculous mycobacteria innate immunity of macrophage.  相似文献   

7.
The timely regulation of inflammatory M1 macrophage polarization toward regenerative M2 macrophages suggests the possibility of immunotherapy after myocardial infarction (MI). C1q/TNF-related protein-9 (CTRP9) has anti-inflammatory effects and can ameliorate heart function in mice after long-term myocardial infarction. The role of CTRP9 in macrophage polarization remains completely unclear. This study determined whether CTRP9 can preserve post-MI early cardiac function through the regulation of macrophage polarization. In the present study, an adenovirus-delivered CTRP9 supplement promoted macrophage polarization at Day 3 post MI and improved cardiac function at Day 7 post MI. Pretreatment with gCTRP9 promoted the M1 to M2 polarization transition and attenuated inflammation after lipopolysaccharide + interferon-γ stimulation; the effects were partly abrogated by the adenosine monophosphate kinase (AMPK) inhibitor compound C and were obviously reinforced by pyrrolidine dithiocarbamate, a nuclear factor-κB (NF-κB) inhibitor. Meanwhile, CTPR9 markedly reduced the expression of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and NF-κB p65 phosphorylation by promoting AMPK phosphorylation in vivo and in vitro. Moreover, the competitive binding of gCTRP9 and LPS to the myeloid differentiation protein 2 (MD2)/TLR4 complex was associated with direct binding to MD2, thereby inhibiting the downstream signaling molecule MyD88. Taken together, we demonstrated that CTRP9 improved post-MI early cardiac function, at least in part, by modulating M1/M2 macrophage polarization, largely via the TLR4/MD2/MyD88 and AMPK-NF-κB pathways.  相似文献   

8.
Dioscorealide B (DB), a naphthofuranoxepin has been purified from an ethanolic extract of the rhizome of Dioscorea membranacea Pierre ex Prain & Burkill which has been used to treat inflammation and cancer in Thai Traditional Medicine. Previously, DB has been reported to have anti‐inflammatory activities through reducing nitric oxide (NO) and tumor necrosis factor‐α (TNF‐α) production in lipopolysaccharides (LPS)‐induced RAW 264.7 macrophage cells. In this study, the mechanisms of DB on LPS‐induced NO production and cytokine expression through the activation of nuclear factor‐κB (NF‐κB) and ERK1/2 are demonstrated in RAW 264.7 cells. Through measurement with Griess's reagent, DB reduced NO level with an IC50 value of 2.85 ± 0.62 µM that was due to the significant suppression of LPS‐induced iNOS mRNA expression as well as IL‐1β, IL‐6, and IL‐10 mRNA at a concentration of 6 µM. At the signal transduction level, DB significantly inhibited NF‐κB binding activity, as determined using pNFκB‐Luciferase reporter system, which action resulted from the prevention of IκBα degradation. In addition, DB in the range of 1.5–6 µM significantly suppressed the activation of the ERK1/2 protein. In conclusion, the molecular mechanisms of DB on the inhibition of NO production and mRNA expression of iNOS, IL‐1β, IL‐6, and IL‐10 were due to the inhibition of the upstream kinases activation, which further alleviated the NF‐κB and MAPK/ERK signaling pathway in LPS‐induced RAW264.7 macrophage cells. J. Cell. Biochem. 109: 1057–1063, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
Excessive activation of pro‐inflammatory M1 macrophages following acute myocardial infarction (MI) aggravates adverse cardiac remodelling and heart dysfunction. There are two break points in the tricarboxylic acid cycle of M1 macrophages, and aspartate‐arginosuccinate shunt compensates them. Aminooxyacetic acid (AOAA) is an inhibitor of aspartate aminotransferase in the aspartate‐arginosuccinate shunt. Previous studies showed that manipulating macrophage metabolism may control macrophage polarization and inflammatory response. In this study, we aimed to clarify the effects of AOAA on macrophage metabolism and polarization and heart function after MI. In vitro, AOAA inhibited lactic acid and glycolysis and enhanced ATP levels in classically activated M1 macrophages. Besides, AOAA restrained pro‐inflammatory M1 macrophages and promoted anti‐inflammatory M2 phenotype. In vivo, MI mice were treated with AOAA or saline for three consecutive days. Remarkably, AOAA administration effectively inhibited the proportion of M1 macrophages and boosted M2‐like phenotype, which subsequently attenuated infarct size as well as improved post‐MI cardiac function. Additionally, AOAA attenuated NLRP3‐Caspase1/IL‐1β activation and decreased the release of IL‐6 and TNF‐α pro‐inflammatory cytokines and reciprocally increased IL‐10 anti‐inflammatory cytokine level in both ischaemic myocardium and M1 macrophages. In conclusion, short‐term AOAA treatment significantly improves cardiac function in mice with MI by balancing macrophage polarization through modulating macrophage metabolism and inhibiting NLRP3‐Caspase1/IL‐1β pathway.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Dysregulation of immune responses to environmental antigens by the intestine leads to the chronic inflammatory disease, inflammatory bowel disease (IBD). Recent studies have thus sought to identify a dietary component that can inhibit lipopolysaccharide (LPS)-induced nuclear factor-kappa beta (NF-κB) signaling to ameliorate IBD. This study assessed if the lactic acid bacteria (LAB) from kimchi, suppresses the expression of tumor necrosis factor-alpha (TNF-α) in peritoneal macrophages induced by LPS. Leuconostoc lactis EJ-1, an isolate from LAB, reduced the expression of interleukin-6 (IL-6) and IL-1β in peritoneal macrophages induced by LPS. The study further tested whether EJ-1 alleviates colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice. TNBS significantly increased myeloperoxidase (MPO) expression, macroscopic colitis scores, and colon shortening. Oral administration of L. lactis EJ-1 resulted in an inhibited in TNBS-induced loss in body weight, colon shortening, MPO activity, and NF-κB and inducible nitric oxide synthase expression; it also led to a marked reduction in cyclooxygenase-2 expression. L. lactis EJ-1 also inhibited the TNBS-induced expression of TNF-α, IL-1β, and IL-6; however, it induced the expression of IL-10. The M2 macrophage markers arginase I, IL-10, and CD206 were elevated by EJ-1. Collectively, these results suggest that EJ-1 inhibits the NF-κB signaling and polarizes M1- to M2-macrophage transition, which help in ameliorating colitis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号