首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gram-negative bacteria need to be able to transport a large variety of macromolecules across their outer membranes. In Escherichia coli, the passage of the group 1 capsular polysaccharide is mediated by an integral outer membrane protein, Wza. The crystal structure of Wza, determined recently, reveals a novel transmembrane alpha-helical barrel and a large central cavity within the core of the vase-shaped protein complex. The structure has similarities with that of the secretin protein, PilQ, which mediates the transition of type IV pili across the outer membrane. We propose that the large internal chamber, which can accommodate the secreted assembled macromolecule, is likely to be a common feature found in other outer membrane proteins involved in secretion processes.  相似文献   

2.
TonB-dependent transport is a mechanism for active uptake across the outer membrane of Gram-negative bacteria. The system promotes transport of rare nutrients and was thought to be restricted to iron complexes and vitamin B12. Recent experimental evidence of TonB-energized transport of nickel and different carbohydrates, in addition to bioinformatic-based predictions, challenges this notion and reveals that the number and variety of TonB-dependent substrates is underestimated. It is becoming clear that the chemical nature of the substrates, the energetic requirements for transport and the subsequent translocation across the cytoplasmic membrane can differ from those of the well-studied systems for iron complexes and vitamin B12. These findings question the understanding of TonB-dependent uptake and provide insights into the adaptation of bacteria to their environments.  相似文献   

3.
ATP-binding-cassette (or ABC)-type transporters constitute one of the largest family of membrane transporters in nature. Many of its members move substrates "actively", i.e. in an ATP-dependent manner against an electrochemical gradient. No consensus is available about the mechanism. Therefore, a novel class of transport mechanisms is proposed based on Maxwell's demon idea. This transport mechanism consists of a gated pore that selectively opens for substrates from one, but not the other side. Thermoenergy (Brownian motion) would suffice for substrate translocation across the membrane; energy for synchronizing gate opening with substrate arrival would come from ATP hydrolysis. Simulations demonstrate that such a mechanism would be thermodynamically and kinetically feasible. It exhibits "active", unidirectional transport, saturation, and other typical features of protein-catalysed reactions. It also shows pore behavior with charged substrates moving under the influence of electrical potentials. Its efficiency depends on a diffusion time constant of the substrate in solution that is slower than the transit time through the membrane, a situation that can realistically be achieved at millimolar or lower substrate concentrations. Features of the novel mechanism that differ significantly from P- or F-type ATPases are: (1) transport cannot be run in "reverse" to synthesize ATP even if sufficient energy is available in the gradient of the transported solute and (2) unidirectional and net substrate fluxes through the transporter diverge with increasing substrate concentration.  相似文献   

4.
5.
The mechanisms of protein secretion by pathogenic bacteria remain poorly understood. In gram-negative bacteria, the two-partner secretion pathway exports large, mostly virulence-related "TpsA" proteins across the outer membrane via their dedicated "TpsB" transporters. TpsB transporters belong to the ubiquitous Omp85 superfamily, whose members are involved in protein translocation across, or integration into, cellular membranes. The filamentous hemagglutinin/FhaC pair of Bordetella pertussis is a model two-partner secretion system. We have reconstituted the TpsB transporter FhaC into proteoliposomes and demonstrate that FhaC is the sole outer membrane protein required for translocation of its cognate TpsA protein. This is the first in vitro system for analyzing protein secretion across the outer membrane of gram-negative bacteria. Our data also provide clear evidence for the protein translocation function of Omp85 transporters.  相似文献   

6.
Lysozyme fails to penetrate through the outer membrane of stationary phase cells of Escherichia coli when it is simply added to suspensions of plasmolyzed cells. Lysozyme penetrates the outer membrane only when these cells are exposed to a mild osmotic shock in the presence of EDTA and lysozyme.In the presence of Mg2+, the outer membrane is stabilized sufficiently so that there is no lysozyme penetration during osmotic shock. If Mg2+ is added after an osmotic shock has been used to cause lysozyme to penetrate a destabilized outer membrane, the outer membrane is stabilized once again. In this case however, cells are converted to spheroplasts by the lysozyme which has gained access to the murein layer prior to the addition of Mg2+. Mg2+ stabilizes the outer membranes of these spheroplasts sufficiently so that they remain immune to lysis even in the absence of osmotic stabilizers such as sucrose.These results are discussed in terms of current information on the structure of the murein layer and the outer membrane.  相似文献   

7.
The mitochondrial pathway of apoptosis proceeds when molecules sequestered between the outer and inner mitochondrial membranes are released to the cytosol by mitochondrial outer membrane permeabilization (MOMP). This process is controlled by the BCL-2 family, which is composed of both pro- and anti-apoptotic proteins. Although there is no disagreement that BCL-2 proteins regulate apoptosis, the mechanism leading to MOMP remains controversial. Current debate focuses on what interactions within the family are crucial to initiate MOMP. Specifically, do the BH3-only proteins directly engage BAX and/or BAK activation or do these proteins solely promote apoptosis by neutralization of anti-apoptotic BCL-2 proteins? We describe these models and contend that BH3-only proteins must perform both functions to efficiently engage MOMP and apoptosis.  相似文献   

8.
In the current issue of Cell Metabolism, Kennedy et al. (2005) have extended our understanding of the ABCG1 transporter. Their studies demonstrate that, at least in macrophages, ABCG1 is responsible for much of the cholesterol efflux that utilizes mature HDL as an acceptor.  相似文献   

9.
The TOB–SAM complex is an essential component of the mitochondrial outer membrane that mediates the insertion of β-barrel precursor proteins into the membrane. We report here its isolation and determine its size, composition, and structural organization. The complex from Neurospora crassa was composed of Tob55–Sam50, Tob38–Sam35, and Tob37–Sam37 in a stoichiometry of 1:1:1 and had a molecular mass of 140 kD. A very minor fraction of the purified complex was associated with one Mdm10 protein. Using molecular homology modeling for Tob55 and cryoelectron microscopy reconstructions of the TOB complex, we present a model of the TOB–SAM complex that integrates biochemical and structural data. We discuss our results and the structural model in the context of a possible mechanism of the TOB insertase.  相似文献   

10.
11.
12.
13.
β-Barrel proteins found in the outer membrane of Gram-negative bacteria serve a variety of cellular functions. Proper folding and assembly of these proteins are essential for the viability of bacteria and can also play an important role in virulence. The β-barrel assembly machinery (BAM) complex, which is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, has been the focus of many recent studies. This review summarizes the significant progress that has been made toward understanding the structure and function of the bacterial BAM complex.  相似文献   

14.
The effects of exogenous reducing agents on a number of biological properties of purified Chlamydia trachomatis LGV-434 and Chlamydia psittaci meningopneumonitis elementary bodies (EBs) have been examined in an attempt to identify in vitro correlates of early events in the differentiation of the infectious EB to the replicative cell type, the reticulate body (RB). Treatment of EBs with dithiothreitol elicited a number of changes normally associated with differentiation to the RB. EBs in the presence of 10 mM dithiothreitol displayed enhanced rates of [14C]glutamate oxidation, reduced infectivity, and decreased osmotic stability, and their Machiavello staining properties changed to those characteristic of the RB. A true differentiation of EB to RB did not take place under these conditions, since EBs treated in this manner and examined by transmission electron microscopy did not demonstrate increased size or decreased electron density as do isolated RBs. Additional studies were initiated to identify the macromolecules involved in this process. With polyacrylamide gel electrophoresis and immunoblotting procedures with monoclonal and polyclonal monospecific antibodies, the chlamydial major outer membrane protein was found to be the predominant component that varied under reducing versus nonreducing conditions. Furthermore, the extent of disulfide-mediated cross-linking of the major outer membrane protein varied between the infective and replicative forms of the C. trachomatis LGV-434 life cycle. Implications of disulfide interactions in the life cycle of chlamydiae are discussed.  相似文献   

15.
Integral membrane proteins PEPT1 and PEPT2 are essential for reabsorbing almost all hydrolysed or filtered di- and tripeptides alongside a wide range of peptidomimetic drugs in the kidney. The aim of this study was to investigate the potential use of the fluorophore-conjugated dipeptide β-Ala-Lys (AMCA) as a biosensor for measuring peptide transport activity in brush border membrane vesicles isolated from the outer cortex (BBMV-OC) and outer medulla (BBMV-OM) (representing PEPT1 and PEPT2 respectively). The vesicles were isolated using a dual magnesium precipitation and centrifugation technique. Intravesicular fluorescence accumulation was measured after incubating extra-vesicular media at pH 6.6 and different concentrations of β-Ala-Lys (AMCA) with vesicles pre-equilibrated at pH 7.4. Both BBMV-OC and BMMV-OM showed accumulation of an intravesicular fluorescence signal after 20 min incubation. Changing the extra-vesicular pH to 7.4 caused a significant reduction in the β-Ala-Lys (AMCA) uptake into BBMV-OC at concentrations > 100 μM. When different concentrations of dipeptide, Gly-Gln was added, there was a significant inhibition of 100 μM β-Ala-Lys (AMCA) uptake into BBMV-OC and BMMV-OM, reaching 69% and 80%, respectively. Kinetic analysis of β-Ala-Lys (AMCA) at 20 min showed that the Km and Vmax were 783.7 ± 115.7 μM and 2191.2 ± 133.9 ΔF/min/mg for BBMV-OC, while BMMV-OM showed significantly higher affinity, but lower capacity at Km = 93.6 ± 21.9 μM and Vmax = 935.8 ± 50.2 ΔF/min/mg. These findings demonstrate the applicability of β-Ala-Lys (AMCA) as a biosensor to measure the transport activity of the renal-type PEPT1 and PEPT2 in BBMV-OC and BMMV-OM respectively.  相似文献   

16.
Auxin (indole-3-acetic acid) has its name derived from the Greek word auxein, meaning 'to increase', and it drives plant growth and development. Auxin is a small molecule derived from the amino acid tryptophan and has both hormone- and morphogen-like properties. Although there is much still to be learned, recent progress has started to unveil how auxin is transported from cell-to-cell in a polar manner. Two recent breakthrough papers from Gerd Jürgens' group indicate that auxin transport is mediated by regulated vesicle trafficking, thus encompassing neurotransmitter-like features.  相似文献   

17.
Abstract The outer-membrane-disorganizing peptide (polymyxin B nonapeptide; PMBN) was able to sensitize even "antibiotic supersensitive" enterobacterial mutants to hydrophobic antibiotics. This resulted in an extreme sensitivity. The mutants included the "deep rough" lipopolysaccharide mutants, as well as the acrA mutant of Escherichia coli and the "class A, B, and C mutants of Salmonella typhimurium . Sensitization factors of approx. 30 or more were found for most antibiotics. Even minimum inhibitory concentrations as low as approx. 0.5 ng/ml (rifampicin), 1.5 ng/ml (erythromycin), 2 ng/ml (fusidic acid), 6 ng/ml (novobiocin), and 30 ng/ml (clindamycin) were achieved in the presence of 30 μg/ml of PMBN. The finding indicates that the mechanisms which mediate the increase in hydrophobic diffusion are different but synergistic in the mutants and in the PMBN-grown cells.  相似文献   

18.
《Biophysical journal》2021,120(23):5295-5308
The outer membrane of Gram-negative bacteria presents a robust physicochemical barrier protecting the cell from both the natural environment and acting as the first line of defense against antimicrobial materials. The proteins situated within the outer membrane are responsible for a range of biological functions including controlling influx and efflux. These outer membrane proteins (OMPs) are ultimately inserted and folded within the membrane by the β-barrel assembly machine (Bam) complex. The precise mechanism by which the Bam complex folds and inserts OMPs remains unclear. Here, we have developed a platform for investigating Bam-mediated OMP insertion. By derivatizing a gold surface with a copper-chelating self-assembled monolayer, we were able to assemble a planar system containing the complete Bam complex reconstituted within a phospholipid bilayer. Structural characterization of this interfacial protein-tethered bilayer by polarized neutron reflectometry revealed distinct regions consistent with known high-resolution models of the Bam complex. Additionally, by monitoring changes of mass associated with OMP insertion by quartz crystal microbalance with dissipation monitoring, we were able to demonstrate the functionality of this system by inserting two diverse OMPs within the membrane, pertactin, and OmpT. This platform has promising application in investigating the mechanism of Bam-mediated OMP insertion, in addition to OMP function and activity within a phospholipid bilayer environment.  相似文献   

19.
20.
Bcl-2 family members, like the structurally similar translocation domain of diphtheria toxin, can form ion-selective channels and larger-diameter pores in artificial lipid bilayers. Recent studies show how Bcl-2 family members change topology in membranes during apoptosis and that these different states may either promote or inhibit apoptosis. Binding of BH3-only proteins alters the subcellular localization and/or membrane topology and probably affects the channel formation of Bcl-2, Bcl-xL and Bcl-w. However, it remains unclear how the pore-forming activity functions in cells to regulate mitochondrial membrane permeabilization and cell death. Bcl-2 family members in flies and worms regulate apoptosis by mechanisms seemingly unrelated to membrane permeabilization, leaving a unifying model for the biochemical activity of this protein family unknown. Work linking Bcl-2 family members to mitochondrial morphogenesis in worms and mammals suggests some common functions of Bcl-2 family proteins may exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号