首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the current era of massive discoveries of noncoding RNAs within genomes, being able to infer a function from a nucleotide sequence is of paramount interest. Although studies of individual group I introns have identified self-splicing and nonself-splicing examples, there is no overall understanding of the prevalence of self-splicing or the factors that determine it among the >2300 group I introns sequenced to date. Here, the self-splicing activities of 12 group I introns from various organisms were assayed under six reaction conditions that had been shown previously to promote RNA catalysis for different RNAs. Besides revealing that assessing self-splicing under only one condition can be misleading, this survey emphasizes that in vitro self-splicing efficiency is correlated with the GC content of the intron (>35% GC was generally conductive to self-splicing), and with the ability of the introns to form particular tertiary interactions. Addition of the Neurospora crassa CYT-18 protein activated splicing of two nonself-splicing introns, but inhibited the second step of self-splicing for two others. Together, correlations between sequence, predicted structure and splicing begin to establish rules that should facilitate our ability to predict the self-splicing activity of any group I intron from its sequence.  相似文献   

2.
GC-AG introns represent 0.7% of total human pre-mRNA introns. To study the function of GC-AG introns in splicing regulation, 196 cDNA-confirmed GC-AG introns were identified in Caenorhabditis elegans. These represent 0.6% of the cDNA- confirmed intron data set for this organism. Eleven of these GC-AG introns are involved in alternative splicing. In a comparison of the genomic sequences of homologous genes between C.elegans and Caenorhabditis briggsae for 26 GC-AG introns, the C at the +2 position is conserved in only five of these introns. A system to experimentally test the function of GC-AG introns in alternative splicing was developed. Results from these experiments indicate that the conserved C at the +2 position of the tenth intron of the let-2 gene is essential for developmentally regulated alternative splicing. This C allows the splice donor to function as a very weak splice site that works in balance with an alternative GT splice donor. A weak GT splice donor can functionally replace the GC splice donor and allow for splicing regulation. These results indicate that while the majority of GC-AG introns appear to be constitutively spliced and have no evolutionary constraints to prevent them from being GT-AG introns, a subset of GC-AG introns is involved in alternative splicing and the C at the +2 position of these introns can have an important role in splicing regulation.  相似文献   

3.
The ribonucleotide reductase gene tandem bnrdE/bnrdF in SPβ-related prophages of different Bacillus spp. isolates presents different configurations of intervening sequences, comprising one to three of six non-homologous splicing elements. Insertion sites of group I introns and intein DNA are clustered in three relatively short segments encoding functionally important domains of the ribonucleotide reductase. Comparison of the bnrdE homologs reveals mutual exclusion of a group I intron and an intein coding sequence flanking the codon that specifies a conserved cysteine. In vivo splicing was demonstrated for all introns. However, for two of them a part of the mRNA precursor molecules remains unspliced. Intergenic bnrdEbnrdF regions are unexpectedly long, comprising between 238 and 541 nt. The longest encodes a putative polypeptide related to HNH homing endonucleases.  相似文献   

4.
Plant mitochondrial group II introns do not all possess hallmark ribozymic features such as the bulged adenosine involved in lariat formation. To gain insight into their splicing pathways, we have examined the physical form of excised introns in germinating wheat embryos. Using RT–PCR and cRT–PCR, we observed conventional lariats consistent with a two-step transesterification pathway for introns such as nad2 intron 4, but this was not the case for the cox2 intron or nad1 intron 2. For cox2, we detected full-length linear introns, which possess non-encoded 3′terminaladenosines, as well as heterogeneous circular introns, which lack 3′ nucleotide stretches. These observations are consistent with hydrolytic splicing followed by polyadenylation as well as an in vivo circularization pathway, respectively. The presence of both linear and circular species in vivo is supported by RNase H analysis. Furthermore, the nad1 intron 2, which lacks a bulged nucleotide at the branchpoint position, comprised a mixed population of precisely full-length molecules and circular ones which also include a short, discrete block of non-encoded nucleotides. The presence of these various linear and circular forms of excised intron molecules in plant mitochondria points to multiple novel group II splicing mechanisms in vivo.  相似文献   

5.
6.
7.
The B.c.I4 group II intron from Bacillus cereus ATCC 10987 harbors an unusual 3′ extension. Here, we report the discovery of four additional group II introns with a similar 3′ extension in Bacillus thuringiensis kurstaki 4D1 that splice at analogous positions 53/56 nt downstream of domain VI in vivo. Phylogenetic analyses revealed that the introns are only 47–61% identical to each other. Strikingly, they do not form a single evolutionary lineage even though they belong to the same Bacterial B class. The extension of these introns is predicted to form a conserved two-stem–loop structure. Mutational analysis in vitro showed that the smaller stem S1 is not critical for self-splicing, whereas the larger stem S2 is important for efficient exon ligation and lariat release in presence of the extension. This study clearly demonstrates that previously reported B.c.I4 is not a single example of a specialized intron, but forms a new functional class with an unusual mode that ensures proper positioning of the 3′ splice site.  相似文献   

8.
Mitochondrial introns in flowering plant genes are virtually all classified as members of the group II ribozyme family although certain structural features have degenerated to varying degrees over evolutionary time. We are interested in the impact that unconventional intron architecture might have on splicing biochemistry in vivo and we have focused in particular on intronic domains V and VI, which for self-splicing introns provide a key component of the catalytic core and the bulged branchpoint adenosine, respectively. Notably, the two transesterification steps in classical group II splicing are the same as for nuclear spliceosomal introns and release the intron as a lariat. Using RT-PCR and circularized RT-PCR, we had previously demonstrated that several wheat mitochondrial introns which lack a branchpoint adenosine have atypical splicing pathways, and we have now extended this analysis to the full set of wheat introns, namely six trans-splicing and sixteen cis-splicing ones. A number of introns are excised using non-lariat pathways and interestingly, we find that several introns which do have a conventional domain VI also use pathways that appear to exploit other internal or external nucleophiles, with the lariat form being relatively minor. Somewhat surprisingly, several introns with weakly-structured domain V/VI helices still exhibit classical lariat splicing, suggesting that accessory factors aid in restoring a splicing-competent conformation. Our observations illustrate that the loss of conventional group II features during evolution is correlated with altered splicing biochemistry in an intron-distinctive manner.  相似文献   

9.
10.
All group II introns known to date fold into six functional domains. However, we recently identified an intron in Bacillus cereus ATCC 10987, B.c.I4, that splices 56nt downstream of the expected 3′ splice site in vivo (Tourasse et al. 2005, J. Bacteriol., 187, 5437–5451). In this study, we confirmed by ribonuclease protection assay that the 56-bp segment is part of the intron RNA molecule, and computational prediction suggests that it might form a stable stem-loop structure downstream of domain VI. The splicing of B.c.I4 was further investigated both in vivo and in vitro. Lariat formation proceeded primarily by branching at the ordinary bulged adenosine in domain VI without affecting the fidelity of splicing. In addition, the splicing efficiency of the wild-type intron was better than that of a mutant construct deleted of the 56-bp 3′ extension. These results indicate that the intron has apparently adapted to the extra segment, possibly through conformational adjustments. The extraordinary group II intron B.c.I4 harboring an unprecedented extra 3′ segment constitutes a dramatic example of the flexibility and adaptability of group II introns.  相似文献   

11.
12.
Mitochondria (mt) in plants house about 20 group-II introns, which lie within protein-coding genes required in both organellar genome expression and respiration activities. While in nonplant systems the splicing of group-II introns is mediated by proteins encoded within the introns themselves (known as “maturases”), only a single maturase ORF (matR) has retained in the mitochondrial genomes in plants; however, its putative role(s) in the splicing of organellar introns is yet to be established. Clues to other proteins are scarce, but these are likely encoded within the nucleus as there are no obvious candidates among the remaining ORFs within the mtDNA. Intriguingly, higher plants genomes contain four maturase-related genes, which exist in the nucleus as self-standing ORFs, out of the context of their evolutionary-related group-II introns “hosts.” These are all predicted to reside within mitochondria and may therefore act “in-trans” in the splicing of organellar-encoded introns. Here, we analyzed the intracellular locations of the four nuclear-encoded maturases in Arabidopsis and established the roles of one of these genes, At5g46920 (AtnMat2), in the splicing of several mitochondrial introns, including the single intron within cox2, nad1 intron2, and nad7 intron2.  相似文献   

13.
14.
Group II introns are catalytic RNAs that are excised from their precursors in a protein-dependent manner in vivo. Certain group II introns can also react in a protein-independent manner under nonphysiological conditions in vitro. The efficiency and fidelity of the splicing reaction is crucial, to guarantee the correct formation and expression of the protein-coding mRNA. RmInt1 is an efficient mobile intron found within the ISRm2011-2 insertion sequence in the symbiotic bacterium Sinorhizobium meliloti. The RmInt1 intron self-splices in vitro, but this reaction generates side products due to a predicted cryptic IBS1* sequence within the 3′ exon. We engineered an RmInt1 intron lacking the cryptic IBS1* sequence, which improved the fidelity of the splicing reaction. However, atypical circular forms of similar electrophoretic mobility to the lariat intron were nevertheless observed. We analyzed a run of four cytidine residues at the 3′ splice site potentially responsible for a lack of fidelity at this site leading to the formation of circular intron forms. We showed that mutations of residues base-pairing in the tertiary EBS3–IBS3 interaction increased the efficiency and fidelity of the splicing reaction. Our results indicate that RmInt1 has developed strategies for decreasing its splicing efficiency and fidelity. RmInt1 makes use of unproductive splicing reactions to limit the transposition of the insertion sequence into which it inserts itself in its natural context, thereby preventing potentially harmful dispersion of ISRm2011-2 throughout the genome of its host.  相似文献   

15.
An intron in a ribosomal protein gene from Tetrahymena   总被引:10,自引:0,他引:10       下载免费PDF全文
We have cloned and sequenced a single copy gene encoding a ribosomal protein from the ciliate Tetrahymena thermophila. The gene product was identified as ribosomal protein S25 by comparison of the migration in two-dimensional polyacrylamide gels of the protein synthesized by translation in vitro of hybrid-selected mRNA and authentic ribosomal proteins. The proteins show strong homology to ribosomal protein S12 from Escherichia coli. The coding region of the gene is interrupted by a 979-bp intron 68 bp downstream of the translation start. This is the first intron in a protein encoding gene of a ciliate to be described at the nucleotide sequence level. The intron obeys the GT/AG rule for splice junctions of nuclear mRNA introns from higher eukaryotes but lacks the pyrimidine stretch usually found in the immediate vicinity of the 3' splice junction. The structure of the intron and the fact that it is found together with the well described self-splicing rRNA intron is discussed in relation to the evolution of RNA splicing.  相似文献   

16.
17.
Correct identification of all introns is necessary to discern the protein-coding potential of a eukaryotic genome. The existence of most of the spliceosomal introns predicted in the genome of Saccharomyces cerevisiae remains unsupported by molecular evidence. We tested the intron predictions for 87 introns predicted to be present in non-ribosomal protein genes, more than a third of all known or suspected introns in the yeast genome. Evidence supporting 61 of these predictions was obtained, 20 predicted intron sequences were not spliced and six predictions identified an intron-containing region but failed to specify the correct splice sites, yielding a successful prediction rate of <80%. Alternative splicing has not been previously described for this organism, and we identified two genes (YKL186C/MTR2 and YML034W) which encode alternatively spliced mRNAs; YKL186C/MTR2 produces at least five different spliced mRNAs. One gene (YGR225W/SPO70) has an intron whose removal is activated during meiosis under control of the MER1 gene. We found eight new introns, suggesting that numerous introns still remain to be discovered. The results show that correct prediction of introns remains a significant barrier to understanding the structure, function and coding capacity of eukaryotic genomes, even in a supposedly simple system like yeast.  相似文献   

18.
The chlL gene product is involved in the light-independent synthesis of chlorophyll in photosynthetic bacteria, green algae and non-flowering plants. The chloroplast genome of Chlorella vulgaris strain C-27 contains the first example of a split chlL gene, which is interrupted by a 951?bp group I intron in the coding region. In vitro synthesized pre-mRNA containing the entire intron and parts of the flanking exon sequences is able to efficiently self-splice in vitro in the presence of a divalent and a monovalent cation and GTP, to yield the ligated exons and other splicing intermediates characteristic of self-splicing group I introns. The 5′ and 3′ splice sites were confirmed by cDNA sequencing and the products of the splicing reaction were characterized by primer extension analysis. The absence of a significant ORF in the long P9 region (522?nt), separating the catalytic core from the 3′ splice site, makes this intron different from the other known examples of group I introns. Guanosine-mediated attack at the 3′ splice site and the presence of G-exchange reaction sites internal to the intron are some other properties demonstrated for the first time by an intron of a protein-coding plastid gene.  相似文献   

19.
The study of functional RNAs of various sizes and structures requires efficient methods for their synthesis and purification. Here, 23 group I intron variants ranging in length from 246 to 341 nucleotides—some containing exons—were subjected to a native purification technique previously applied only to shorter RNAs (<160 nucleotides). For the RNAs containing both exons, we adjusted the original purification protocol to allow for purification of radiolabeled molecules. The resulting RNAs were used in folding assays on native gel electrophoresis and in self-splicing assays. The intron-only RNAs were subjected to the regular native purification scheme, assayed for folding and employed in crystallization screens. All RNAs that contained a 3′ overhang of one nucleotide were efficiently cleaved off from the support and were at least 90% pure after the non-denaturing purification. A representative subset of these RNAs was shown to be folded and self-splicing after purification. Additionally, crystals were grown for a 286 nucleotide long variant of the Clostridium botulinum intron. These results demonstrate the suitability of the native affinity purification method for the preparation of group I introns. We hope these findings will stimulate a broader application of this strategy to the preparation of other large RNA molecules.  相似文献   

20.
As part of the exploratory sequencing program Génolevures, visual scrutinisation and bioinformatic tools were used to detect spliceosomal introns in seven hemiascomycetous yeast species. A total of 153 putative novel introns were identified. Introns are rare in yeast nuclear genes (<5% have an intron), mainly located at the 5′ end of ORFs, and not highly conserved in sequence. They all share a clear non-random vocabulary: conserved splice sites and conserved nucleotide contexts around splice sites. Homologues of metazoan snRNAs and putative homologues of SR splicing factors were identified, confirming that the spliceosomal machinery is highly conserved in eukaryotes. Several introns’ features were tested as possible markers for phylogenetic analysis. We found that intron sizes vary widely within each genome, and according to the phylogenetic position of the yeast species. The evolutionary origin of spliceosomal introns was examined by analysing the degree of conservation of intron positions in homologous yeast genes. Most introns appeared to exist in the last common ancestor of present day yeast species, and then to have been differentially lost during speciation. However, in some cases, it is difficult to exclude a possible sliding event affecting a pre-existing intron or a gain of a novel intron. Taken together, our results indicate that the origin of spliceosomal introns is complex within a given genome, and that present day introns may have resulted from a dynamic flux between intron conservation, intron loss and intron gain during the evolution of hemiascomycetous yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号