首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary There is wide variation in the length of the Y chromosome. In the same individual the length varies continuously and is normally distributed. We describe a boy with borderline mental retardation, gross and fine motor coordination difficulty, muscle rigidity, ptosis, clinodactyly, and a Y chromosome of different lengths in two separate cell populations. The most probable explanation of the cytogenetic finding is a mitotic unequal sister chromatid exchange of the Y chromosome.  相似文献   

2.
Mozlin AM  Fung CW  Symington LS 《Genetics》2008,178(1):113-126
Rad51 requires a number of other proteins, including the Rad51 paralogs, for efficient recombination in vivo. Current evidence suggests that the yeast Rad51 paralogs, Rad55 and Rad57, are important in formation or stabilization of the Rad51 nucleoprotein filament. To gain further insights into the function of the Rad51 paralogs, reporters were designed to measure spontaneous or double-strand break (DSB)-induced sister or nonsister recombination. Spontaneous sister chromatid recombination (SCR) was reduced 6000-fold in the rad57 mutant, significantly more than in the rad51 mutant. Although the DSB-induced recombination defect of rad57 was suppressed by overexpression of Rad51, elevated temperature, or expression of both mating-type alleles, the rad57 defect in spontaneous SCR was not strongly suppressed by these same factors. In addition, the UV sensitivity of the rad57 mutant was not strongly suppressed by MAT heterozygosity, even though Rad51 foci were restored under these conditions. This lack of suppression suggests that Rad55 and Rad57 have different roles in the recombinational repair of stalled replication forks compared with DSB repair. Furthermore, these data suggest that most spontaneous SCR initiates from single-stranded gaps formed at stalled replication forks rather than DSBs.  相似文献   

3.
We used a genetic assay to monitor the behavior of sister chromatids during the cell cycle. We show that the ability to induce sister chromatid exchanges (SCE) with ionizing radiation is maximal in budded cells with undivided nuclei and then decreases prior to nuclear division. SCE can be induced in cells arrested in G2 using either nocodazole or cdc mutants. These data show that sister chromatids have two different states prior to nuclear division. We suggest that the sister chromatids of cir. III, a circular derivative of chromosome III, separate (anaphase A) prior to spindle elongation (anaphase B). Other interpretations are also discussed. SCE can be induced in cdc mutants that arrest in G2 and in nocodazole-treated cells, suggesting that mitotic checkpoints arrest cells prior to sister chromatid separation.  相似文献   

4.
Biggins S  Bhalla N  Chang A  Smith DL  Murray AW 《Genetics》2001,159(2):453-470
Accurate chromosome segregation requires the precise coordination of events during the cell cycle. Replicated sister chromatids are held together while they are properly attached to and aligned by the mitotic spindle at metaphase. At anaphase, the links between sisters must be promptly dissolved to allow the mitotic spindle to rapidly separate them to opposite poles. To isolate genes involved in chromosome behavior during mitosis, we microscopically screened a temperature-sensitive collection of budding yeast mutants that contain a GFP-marked chromosome. Nine LOC (loss of cohesion) complementation groups that do not segregate sister chromatids at anaphase were identified. We cloned the corresponding genes and performed secondary tests to determine their function in chromosome behavior. We determined that three LOC genes, PDS1, ESP1, and YCS4, are required for sister chromatid separation and three other LOC genes, CSE4, IPL1, and SMT3, are required for chromosome segregation. We isolated alleles of two genes involved in splicing, PRP16 and PRP19, which impair alpha-tubulin synthesis thus preventing spindle assembly, as well as an allele of CDC7 that is defective in DNA replication. We also report an initial characterization of phenotypes associated with the SMT3/SUMO gene and the isolation of WSS1, a high-copy smt3 suppressor.  相似文献   

5.
CTF4 and CTF18 are required for high-fidelity chromosome segregation. Both exhibit genetic and physical ties to replication fork constituents. We find that absence of either CTF4 or CTF18 causes sister chromatid cohesion failure and leads to a preanaphase accumulation of cells that depends on the spindle assembly checkpoint. The physical and genetic interactions between CTF4, CTF18, and core components of replication fork complexes observed in this study and others suggest that both gene products act in association with the replication fork to facilitate sister chromatid cohesion. We find that Ctf18p, an RFC1-like protein, directly interacts with Rfc2p, Rfc3p, Rfc4p, and Rfc5p. However, Ctf18p is not a component of biochemically purified proliferating cell nuclear antigen loading RF-C, suggesting the presence of a discrete complex containing Ctf18p, Rfc2p, Rfc3p, Rfc4p, and Rfc5p. Recent identification and characterization of the budding yeast polymerase kappa, encoded by TRF4, strongly supports a hypothesis that the DNA replication machinery is required for proper sister chromatid cohesion. Analogous to the polymerase switching role of the bacterial and human RF-C complexes, we propose that budding yeast RF-C(CTF18) may be involved in a polymerase switch event that facilities sister chromatid cohesion. The requirement for CTF4 and CTF18 in robust cohesion identifies novel roles for replication accessory proteins in this process.  相似文献   

6.
Sister chromatid exchange (SCE) can occur by several recombination mechanisms, including those directly initiated by double-strand breaks (DSBs), such as gap repair and break-induced replication (BIR), and those initiated when DNA polymerases stall, such as template switching. To elucidate SCE recombination mechanisms, we determined whether spontaneous and DNA damage-associated SCE requires specific genes within the RAD52 and RAD3 epistasis groups in Saccharomyces cerevisiae strains containing two his3 fragments, his35′ and his33::HOcs. SCE frequencies were measured after cells were exposed to UV, X-rays, 4-nitroquinoline 1-oxide (4-NQO) and methyl methanesulfonate (MMS), or when an HO endonuclease-induced DSB was introduced at his33::HOcs. Our data indicate that genes involved in gap repair, such as RAD55, RAD57 and RAD54, are required for DNA damage-associated SCE but not for spontaneous SCE. RAD50 and RAD59, genes required for BIR, are required for X-ray-associated SCE but not for SCE stimulated by HO-induced DSBs. In comparison with wild type, rates of spontaneous SCE are 10-fold lower in rad51 rad1 but not in either rad51 rad50 or rad51 rad59 double mutants. We propose that gap repair mechanisms are important in DNA damage-associated recombination, whereas alternative pathways, including a template switch pathway, play a role in spontaneous SCE.  相似文献   

7.
Onoda F  Takeda M  Seki M  Maeda D  Tajima J  Ui A  Yagi H  Enomoto T 《DNA Repair》2004,3(4):429-439
SMC6 (RHC18) in Saccharomyces cerevisiae, which is a homologue of the Schizosaccharomyces pombe rad18+ gene and essential for cell viability, encodes a structural maintenance of chromosomes (SMC) family protein. In contrast to the rest of the SMC family of proteins, Smc1-Smc4, which are the components of cohesin or condensin, little is known about Smc6. In this study, we generated temperature sensitive (ts) smc6 mutants of budding yeast and characterized their properties. One ts-mutant, smc6-56, ceased growth soon after up-shift to a non-permissive temperature, arrested in the late S and G2/M phase, and gradually lost viability. smc6-56 cells at a permissive temperature showed a higher sensitivity than wild-type cells to various DNA damaging agents including methyl methanesulfonate (MMS). The rad52 smc6-56 double mutant showed a sensitivity to MMS similar to that of the rad52 single mutant, indicating that Smc6 is involved in a pathway that requires Rad52 to function. Moreover, no induction of interchromosomal recombination and sister chromatid recombination was observed in smc6-56 cells, which occurred in wild-type cells upon exposure to MMS.  相似文献   

8.
The DNA lesions responsible for the formation of sister chromatid exchanges (SCEs) have been the object of research for a long time. SCEs can be visualized by growing cells for either two rounds of replication in the presence of 5-bromo-2'-deoxyuridine (BrdU) or for one round with BrdU and the next without. If BrdU is added after cells were treated with a DNA-damaging agent, the effect on SCEs can only be analyzed in the second post-treatment mitosis. If one wishes to analyze the first post-treatment mitosis, cells unifilarily labeled with BrdU must be treated. Due to the highly reactive bromine atom, BrdU interacts with such agents like ionizing and UV radiation enhancing the frequency of SCEs. However, its precise role in this process was difficult to assess for a long time, because no alternative technique existed that allowed differential staining of chromatids. We have recently developed a method to differentially label sister chromatids with biotin-16-2'-deoxyuridine-5'-triphosphate (biotin-dUTP) circumventing the disadvantage of BrdU. This technique was applied to study the SCEs induced by ionizing and UV radiation as well as by mitomycin C, DNaseI and AluI. This article is a review of the results and conclusions of our previous studies.  相似文献   

9.
10.
Automatic measurement of sister chromatid exchange frequency.   总被引:1,自引:0,他引:1  
An automatic system for detecting and counting sister chromatid exchanges in human chromosomes has been developed. Metaphase chromosomes from lymphocytes which had incorporated 5-bromodeoxyuridine for two replication cycles were treated with the dye 33258 Hoechst and photodegraded so that the sister chromatids exhibited differential Giemsa staining. A computer-controlled television-microscope system was used to acquire digitized metaphase spread images by direct scanning of microscope slides. Individual objects in the images were identified by a thresholding procedure. The probability that each object was a single, separate chromosome was estimated from size and shape measurements. An analysis of the spatial relationships of the dark-chromatid regions of each object yielded a set of possible exchange locations and estimated probabilities that such locations corresponded to sister chromatid exchanges. A normalized estimate of the sister chromatid exchange frequency was obtained by summing the joint probabilities that a location contained an exchange within a single, separate chromosome over the set of chromosomes from one or more cells and dividing by the expected value of the total chromosome area analyzed. Comparison with manual scoring of exchanges showed satisfactory agreement up to levels of approximately 30 sister chromatid exchanges/cell, or slightly more than twice control levels. The processing time for this automated sister chromatid exchange detection system was comparable to that of manual scoring.  相似文献   

11.
The SGS1 of Saccharomyces cerevisiae is a homologue of the Bloom's syndrome and Werner's syndrome genes. The sgs1 disruptants show hyperrecombination, higher sensitivity to methyl methanesulfonate and hydroxyurea, and poor sporulation. In this study, we found that sister chromatid exchange was increased in sgs1 disruptants. We made mutated SGS1 genes coding a protein proved to lack DNA helicase activity (sgs1-hd), having equivalent missense mutations found in Bloom's syndrome patients (sgs1-BS1, sgs1-BS2). None of the mutated genes could suppress the higher sensitivity to methyl methanesulfonate and hydroxyurea and the increased frequency of interchromosomal recombination and sister chromatid exchange of sgs1 disruptants. On the other hand, all of the mutant genes were able to complement the poor sporulation phenotype of sgs1 disruptants, although the values were not as high as that of wild-type SGS1.  相似文献   

12.
The incidence of sister chromatid exchange was determined in human leucocyte cultures treated with methylazoxymethanol acetate. In all individuals examined, treated cultures manifested a significantly higher frequency of sister chromatid exchanges than controls. Two concentrations of MAM AC were tested in blood cultures from nine individuals. The concentrations varied from individual to individual since they were determined by means of individual dose-response curves, which involved [3H]-thymidine incorporation in PHA-stimulated short-term lymphocyte cultures versus MAM AC contraction. The lower concentration was less than the TD50 dose. Compared to control cultures, the lower concentration caused a higher incidence of sister chromatid exchange in eight of nine individuals. The cumulative mean value for all control cultures was 5.32 exchanges per cell while that for cultures treated with the higher concentration was 10.73.  相似文献   

13.
Raposo A  Carvalho CR  Otoni WC 《Hereditas》2004,141(3):318-322
The present study reports the use of the fluorescence plus Giemsa (FPG) technique, image analysis and statistical methods to assess the sister chromatid exchanges (SCEs) frequency in maize. Roots derived from germinated maize seeds were treated with BrdU solution and fixed. The slides were prepared by enzymatic cellular dissociation, air-drying technique, stained with Hoechst 33258 fluorochrome, and incubated in salt solution. The chromosomes were irradiated with ultraviolet light and stained with Giemsa solution. The FPG technique associated with digital analysis system was used to measure the length of 597 BrdU-incorporated maize chromosomes and to identify 0.5243 SCE per chromosome. A range from 0 to 4 SCE events were classified and the chi-square test (chi2=1.586, P=0.662) showed a good fit to the hypothesis that the SCEs are independent and random events that follow Poisson distribution. The SCE frequencies in long and short chromosome arms corresponded to a mean value of 0.876 SCE microm(-1). Considering that the maize line used in this study contains 5.78 picogram (pg) DNA (2C value) in interphasic G0/G1 nuclei or 11.56 pg DNA (4C value) in metaphase, and that the DNA mean value corresponds to 0.578 pg/metaphasic chromosome, the analysis suggests an occurrence of approximately 0.9 SCE/pg DNA.  相似文献   

14.
Sister chromatid exchange and the evolution of rDNA spacer length   总被引:3,自引:0,他引:3  
The structures of rDNA spacers from several species have been characterized and virtually all have internally repeated sequences. Different numbers of these internal repeats are responsible for most spacer length variation. Because unequal recombination between these internal repeats will cause new length variation, while unequal exchange between rDNA copies will homogenize the variants, we modeled the interaction of these two processes. Two models were used to simulate both types of unequal exchange at the sister chromatid level. Both models indicate that a narrow range of relative recombination frequencies is required to produce levels of variability comparable to those published. One model puts a lower limit on the number of internal repeats, and the other puts both a lower and upper limit on the number of repeats. The model with both maximum and minimum constraints produces a distribution closer to actual spacer distributions. These results imply that small changes in recombination rates can generate the differences in numbers of length variants observed in different species.  相似文献   

15.
Chromosome ends are known hotspots of meiotic recombination and double-strand breaks. We monitored mitotic sister chromatid exchange (SCE) in telomeres and subtelomeres and found that 17% of all SCE occurs in the terminal 0.1% of the chromosome. Telomeres and subtelomeres are significantly enriched for SCEs, exhibiting rates of SCE per basepair that are at least 1,600 and 160 times greater, respectively, than elsewhere in the genome.  相似文献   

16.
Sister chromatid exchanges (SCEs) in early- and late-replicating X chromosomes of seven female cattle (Bos taurus L.) and five female river buffalo (Bubalus bubalis L.) were studied in untreated lymphocytes and lymphocytes treated with mitomycin C (MMC). In the experiment, 577 SCEs on X chromosomes of MMC-untreated cells and 825 SCEs on X chromosomes of MMC-treated cells from both species were observed. No significant differences between the number of SCEs in early- and late-replicating X chromosomes were found even when singular species and subjects were considered.  相似文献   

17.
Summary Human female blood cultures were labeled with BrdU for detecting sister chromatid exchanges (SCEs) by the Hoechst 33258 fluorescence technique. Late labeling with 3H-thymidine and autoradiography allowed the identification of the late replicating X. The mean number of SCEs in the cells was 13. The isopycnotic X showed an exchange frequency according to its relative length in the karyotype; in the late replicating X a doubled number of SCE events was observed.  相似文献   

18.
19.
Peculiarities of frequency variations in sister chromatid exchanges (SCE) were studied in a group of healthy Leningrad citizens who are not engaged in health-risk industries. No relations were found between the SCE frequency and sex, age and smoking habit (10 cigarettes per day as much). The statistical processing of the data obtained was made taking into account the errors in individual measurements of the SCE frequency. Repeated measurements revealed systematic and statistically significant variations in the rate of SCE.  相似文献   

20.
Chromosome segregation must be executed accurately during both mitotic and meiotic cell divisions. Sgo1 plays a key role in ensuring faithful chromosome segregation in at least two ways. During meiosis this protein regulates the removal of cohesins, the proteins that hold sister chromatids together, from chromosomes. During mitosis, Sgo1 is required for sensing the absence of tension caused by sister kinetochores not being attached to microtubules emanating from opposite poles. Here we describe a differential requirement for Sgo1 in the segregation of homologous chromosomes and sister chromatids. Sgo1 plays only a minor role in segregating homologous chromosomes at meiosis I. In contrast, Sgo1 is important to bias sister kinetochores toward biorientation. We suggest that Sgo1 acts at sister kinetochores to promote their biorientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号