首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test the sensitivity to hypoxia of voltage-dependent Na+ channels of freshly isolated rat cortical neurons, we used a whole-cell patch-clamp technique in combination with the direct control and measurements of the partial oxygen pressure (PO2) in the bath solution. It was shown that in rather early postnatal stage (P12 and P13) Na+ channels in the membrane of cortical neurons have a definite sensitivity to decreased PO2 in the medium, and these channels can be one of the principal targets for hypoxia. Under hypoxic conditions, a significant increase (about 2.5 times) in the amplitude of Na+ current was observed. It can be suggested that a large part of the damaging Ca2+ influx, which occurs during anoxia, is mediated by affecting the Na+/Ca2+ exchanger. The latter is forced to operate in a reverse mode due to Na+ influx via voltage-gated Na+ channels.  相似文献   

2.

Background

Despite decades of intense research efforts, actions of acute opioids are not fully understood. Increasing evidence suggests that in addition to well-documented antinociceptive effects opioids also produce paradoxical hyperalgesic and excitatory effects on neurons. However, most studies focus on the pronociceptive actions of chronic opioid exposure. Matrix metalloproteinase 9 (MMP-9) plays an important role in neuroinflammation and neuropathic pain development. We examined MMP-9 expression and localization in dorsal root ganglia (DRGs) after acute morphine treatment and, furthermore, the role of MMP-9 in modulating acute morphine-induced analgesia and hyperalgesia in mice.

Results

Subcutaneous morphine induced a marked up-regulation of MMP-9 protein in DRGs but not spinal cords. Morphine also increased MMP-9 activity and mRNA expression in DRGs. MMP-9 up-regulation peaked at 2 h but returned to the baseline after 24 h. In DRG tissue sections, MMP-9 is expressed in small and medium-sized neurons that co-express mu opioid receptors (MOR). In DRG cultures, MOR agonists morphine, DAMGO, and remifentanil each increased MMP-9 expression in neurons, whereas the opioid receptor antagonist naloxone and the MOR-selective antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) suppressed morphine-induced MMP-9 expression. Notably, subcutaneous morphine-induced analgesia was enhanced and prolonged in Mmp9 knockout mice and also potentiated in wild-type mice receiving intrathecal injection of MMP-9 inhibitors. Consistently, intrathecal injection of specific siRNA targeting MMP-9 reduced MMP-9 expression in DRGs and enhanced and prolonged morphine analgesia. Subcutaneous morphine also produced heat hyperalgesia at 24 h, but this opioid-induced hyperalgesia was not enhanced after MMP-9 deletion or inhibition.

Conclusions

Transient MMP-9 up-regulation in DRG neurons can mask opioid analgesia, without modulating opioid-induced hyperalgesia. Distinct molecular mechanisms (MMP-9 dependent and independent) control acute opioid-induced pronociceptive actions (anti-analgesia in the first several hours and hyperalgesia after 24 h). Targeting MMP-9 may improve acute opioid analgesia.  相似文献   

3.
The effects of quinidine and lidocaine on frog ventricle were studied by using a single sucrose gap voltage clamp technique. In Ca2+-Ringer, quinidine (80 microM) caused slight prolongation of action potential duration (APD50) and significant inhibition of twitch tension. Lidocaine (40 microM) shortened APD50 without significant effect on twitch tension. In tetrodotoxin (TTX)-treated preparations, quinidine caused significant prolongation of APD50 from 529 +/- 19 msec to 597 +/- 11 msec, (n = 9) and inhibition of twitch tension, but lidocaine did not affect APD50 and twitch tension. Under voltage clamp condition, quinidine reduced peak inward current in the absence of TTX, but enhanced peak inward current in the presence of TTX. The steady state outward current was increased by quinidine. Lidocaine didn't affect peak inward current in the absence or in the presence of TTX. Membrane current through the inward rectifier (IK1) was slightly increased by lidocaine, but significantly inhibited by quinidine. The enhancement of peak inward current by quinidine was retarded or reversed in preparation bathed with Sr2+-Ringer. When Ni2+ was added to a preparation bathed in Ca2+-Ringer, an inhibition of calcium inward current and action potential plateau was observed. The spike amplitude of the action potential was, however, unaffected by Ni2+. In this Ni2+-treated preparation, lidocaine (20 microM) caused significant shortening of APD50 without significant effect on action potential amplitude. The shortening of APD50 was associated with a slight increase of steady state outward current. The increase of steady state outward current by lidocaine was absent in the TTX-treated preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Squid olfactory receptor neurons are primary bipolar sensory neurons capable of transducing water-born odorant signals into electrical impulses that are transmitted to the brain. In this study, we have identified and characterized the macroscopic properties of voltage-gated Na+ channels in olfactory receptor neurons from the squid Lolliguncula brevis. Using whole-cell voltage-clamp techniques, we found that the voltage-gated Na+ channels were tetrodotoxin sensitive and had current densities ranging from 5 to 169 pA pF−1. Analyses of the voltage dependence and kinetics revealed interesting differences from voltage-gated Na+ channels in olfactory receptor neurons from other species; the voltage of half-inactivation was shifted to the right and the voltage of half-activation was shifted to the left such that a “window-current” occurred, where 10–18% of the Na+ channels activated and did not inactivate at potentials near action potential threshold. Our findings suggest that in squid olfactory neurons, a subset of voltage-gated Na+ channels may play a role in generating a pacemaker-type current for setting the tonic levels of electrical activity required for transmission of hyperpolarizing odor responses to the brain. Accepted: 1 October 1998  相似文献   

5.
Phasic ("use-dependent") inhibition of sodium currents by the tertiary amine local anesthetics, lidocaine and bupivacaine, was observed in voltage-clamped node of Ranvier of the toad, Bufo marinus. Local anesthetics were assumed to inhibit sodium channels through occupation of a binding site with 1:1 stoichiometry. A three-parameter empirical model for state-dependent anesthetic binding to the Na channel is presented: this model includes two discrete parameters that represent the time integrals of binding and unbinding reactions during a depolarizing pulse, and one continuous parameter that represents the rate of unbinding of drug between pulses. The change in magnitude of peak sodium current during a train of depolarizing pulses to 0 mV was used as an assay of the extent of anesthetic binding at discrete intervals; estimates of model parameters were made by applying a nonlinear least-squares algorithm to the inhibition of currents obtained at two or more depolarizing pulse rates. Increasing the concentration of drug increased the rate of binding but had little or no effect on unbinding, as expected for a simple bimolecular reaction. The dependence of the model parameters on pulse duration was assessed for both drugs: as the duration of depolarizing pulses was increased, the fraction of channels binding drug during each pulse became significantly larger, whereas the fraction of occupied channels unbinding drug remained relatively constant. The rate of recovery from block between pulses was unaffected by pulse duration or magnitude. The separate contributions of open (O) and inactivated (I) channel binding of drug to the net increase in block per pulse were assessed at 0 mV: for lidocaine, the forward binding rate ko was 1.3 x 10(5) M-1 s-1, kl was 2.4 x 10(4) M-1 s-1; for bupivacaine, ko was 2.5 x 10(5) M-1 s-1, kl was 4.4 x 10(4) M-1 s-1. These binding rates were similar to those derived from time-dependent block of maintained Na currents in nodes where inactivation was incomplete due to treatment with chloramine-T. The dependence of model parameters on the potential between pulses (holding potential) was examined. All three parameters were found to be nearly independent of holding potential from -70 to -100 mV. These results are discussed with respect to established models of dynamic local anesthetic-Na channel interactions.  相似文献   

6.
Two new types of calcium channels were discovered during research in ionic currents in the somatic membrane ofHelix pomatia neurons, using an intracellular perfusion technique. Apart from the principal calcium current described in the literature with a holding potential of about –110 mV, an additional calcium current was observed activated at depolarizations of –40 to –80 mV and was not reduced when the cell was perfused with solutions containing fluoride anions. The kinetics of this current were well described in the context of the Hodgkin and Huxley model with a time constant of activation of 6–8 msec and of inactivation of 300–600 msec. It increased in amplitude as the Ca++ rose in the cellular environment but was reduced by extracellular addition of the Ca++ antagonists Co++, Ni++, and Cd++, and the organic blockers nifedipine and verapamil. The association constants of these substances with corresponding channels determined from the maximum of the current-voltage relationship were 2 (Ca++), 3 (Co++), 0.06 (nifedipine), and 0.2 mM (verapamil). The properties detected in this component of calcium conductance are compared with those of calcium channels in other excitatory formations and its possible functional role is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 627–633, September–October, 1985.  相似文献   

7.
We have studied the effect of N-bromoacetamide (NBA) on the behavior of single sodium channel currents in excised patches of rat myotube membrane at 10 degree C. Inward sodium currents were activated by voltage steps from holding potentials of about -100 mV to test potentials of -40 mV. The cytoplasmic-face solution was isotonic CsF. Application of NBA or pronase to the cytoplasmic face of the membrane irreversibly removed sodium channel inactivation, as determined by averaged single-channel records. Teh lifetime of the open channel at - 40 mV was increased about 10-fold by NBA treatment without affecting the amplitude of single-channel currents. A binomial analysis was used both before and after treatment to determine the number of channels within the excised patch. NBA was shown to have little effect on activation kinetics, as determined by an examination of both the rising phase of averaged currents and measurements f the delay between the start of the pulse and the first channel opening. Our data support a kinetic model of sodium channel activation in which the rate constant leading back from the open state to the last closed state is slower than expected from a strict Hodgkin-Huxley model. The data also suggest that the normal open-channel lifetime is primarily determined by the inactivation process in the voltage range we have examined.  相似文献   

8.
The displacement current was recorded in the Ranvier node membrane ofRana ridibunda. This current was shown to be due to conversion of charges from the initial state in which they were when a high negative voltage was present on the membrane into the final state. The dependence of the displacement charge on the membrane potential and state of activation of the sodium channels suggests that the displacement current is connected with activation of the m gates of the sodium channels. Considering the density of the displaced charges, the density of the sodium channels can be estimated to be 5000 channels/µ2.A. A. Ukhtomskii Institute of Physiology, A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 410–417, July–August, 1976.  相似文献   

9.
可乐定对背根神经节神经元GABA激活电流的抑制作用   总被引:6,自引:1,他引:5  
Wang QW  Li Q  Li ZW 《生理学报》1998,50(1):19-27
本实验在新鲜分离大鼠背根神经节(DRG)细胞上应用全细胞膜片的箝记录研究贤上腺素α2-受体激动剂可乐定(clonidine)对GABA-激活电流的调制作用。发现缘大多数DRG细胞对GABA(10^-6 ̄10^-3mol/L)敏感(72/75),产生浓度依赖性的内向电流;并且可被bicuculine(10^-5 ̄10^-4mol/L)所阻断。在多数细胞中(51/72)预加可乐定(10^-8 ̄10^-  相似文献   

10.
Sodium currents and action potentials were recorded from myocytes of neonatal rats during acute exposure to thyroid hormone (5–20 nM). One to 5 minutes after addition of thyroid hormone to the bath, decay from peak Na current was slowed, with the fractional current flowing 20 ms after onset (relative to peak current) increasing from 6±5% to 17±13% (p<0.01, n=12). Action potential durations were increased from 55±14 to 86±36 msec (p<0.05, n=6). The effects of thyroid hormone were partially reversed by lidocaine (60 M, n=5), a specific blocker of a slow sub-population of Na channels. Thus thyroid hormone interacts directly with myocyte membrane, probably by slowing of inactivation of Na channels.Abbreviations and Symbols T3 3,5,3-triiodo-L-thyronine - INa current carried by sodium ions - IT3 net current attributible to T3 treatment - I20 % of peak current at 20 msec after current onset - ADP90 Time required for action potential to return to within 10% of baseline level  相似文献   

11.
Sodium currents after repolarization to more negative potentials after initial activation were digitally recorded in voltage-clamped Myxicola axons compensated for series resistance. The results are inconsistent with a Hodgkin-Huxley-type kinetic scheme. At potentials more negative than -50 mV, the Na+ tails show two distinct time constants, while at more positive potentials only a single exponential process can be resolved. The time-course of the tail currents was totally unaffected when tetrodotoxin (TTX) was added to reduce gNa to low values, demonstrating the absence of any artifact dependent on membrane current. Tail currents were altered by [Ca++] in a manner consistent with a simple alteration in surface potential. Asymmetry current "off" responses are well described by a single exponential. The time constant for this response averaged 2.3 times larger than that for the rapid component of the Na+ repolarization current and was not sensitive to pulse amplitude or duration, although it did vary with holding potential. Other asymmetry current observations confirm previous reports on Myxicola.  相似文献   

12.
The Na(v)1.6 voltage-gated sodium channel has been implicated in the generation of resurgent currents in cerebellar Purkinje neurons. Our data show that resurgent sodium currents are produced by some large diameter dorsal root ganglion (DRG) neurons from wild-type mice, but not from Na(v)1.6-null mice; small DRG neurons do not produce resurgent currents. Many, but not all, DRG neurons transfected with Na(v)1.6 produce resurgent currents. These results demonstrate for the first time the intrinsic ability of Na(v)1.6 to produce a resurgent current, and also show that cell background is critical in permitting the generation of these currents.  相似文献   

13.
Summary 1. The effects of aluminium (Al) on calcium (Ca) currents were investigated by using the conventional two-electrode voltage clamp technique inHelix pomatia neurons. The peak amplitude, kinetics, and voltage dependence of activation and inactivation of the Ca currents were studied in the presence of 10–5–10–3 M AlCl3, at pH 6.2. Al prolonged the rising phase of the Ca currents and therefore increased the time to peak at each command voltage step used.3. There was no significant influence of Al on the peak amplitude of the Ca currents, but the voltage dependence of the time to peak, activation, and inactivation of the Ca currents shifted to more positive potentials as a consequence of Al treatment.4. The leak currents were not influenced by Al up to 1 mM, which was the maximal dose applied.5. The results support the suggestion that Al may modify the Ca homeostasis and that it exerts a neurotoxic effect, at least in part, by modulation of the Ca current of the neuronal membrane.  相似文献   

14.
Using a voltage-clamp technique and intracellular dialysis, gating currents of sodium channels were first recorded and studied in neurons of the rat trigeminal ganglia. The rising phase of gating currents lasted 30 to 70 µsec; these currents decayed in a monoexponential manner with a time constant equal to that for activation of the sodium current. Voltage dependences for the gating charge and sodium conductance were also nearly identical. Analysis of the activation of sodium conductance demonstrated that the power n of the activation variable in the equation used changed from more than 6 to 3 at test potentials of –30 mV and 0 mV, respectively. It is hypothesized that, with a change in the test potential within this voltage range, the cooperativity of activation undergoes a twofold decrease. In the presence of 2 mM caffeine or theophylline in the external solution, curves of the voltage dependence of the gating charge and sodium conductance shifted toward more negative values of the test potential, by 5.4 ± 0.7 mV, the maximum gating charge increased by 8.4 ± 3.2%, and the slope factor for both curves decreased by 9.2 ± 3.4%. Since the above effects were identical for both xanthines and developed under conditions of constant intracellular dialysis, i.e., under conditions where the effect of a change in the intracellular calcium concentration was ruled out, the most probable reason for these effects is a direct action of the tested agents on sodium ion channels, which facilitates the movement of gating charges.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 370–376, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   

15.
16.
Spinal cord neurons were dissociated from 13-day embryonic mice and grown in culture for 1-28 days. Sodium currents of neurons in culture for 1-2 days were compared with those in culture for 2-4 weeks, using the whole-cell voltage clamp method. Rapid neurite outgrowth created space clamp limitations so that unclamped neuritic sodium action potentials prevented accurate analysis of sodium current properties. Therefore neurons were bathed in sodium-free solution and brief puffs of sodium were delivered to the cell soma so that only somatic sodium currents were recorded. Sodium currents of neurons at 1-2 days in culture had voltage-dependent activation and inactivation characteristic of these channels, both in mature cultured spinal neurons and in other preparations. However, the estimated channel density on the soma of neurons 1-2 days in culture was less than two channels per micron2. Since the available sodium conductance (as measured by action potential rise rates) increases during development of spinal cord neurons in culture (Westbrook and Brenneman, 1984), we suggest that changes in channel density and/or distribution, rather than in channel kinetics, may underlie the increase in sodium conductance.  相似文献   

17.
Y Ikemoto  N Akaike  K Ono 《Life sciences》1988,42(16):1557-1564
The primary site of anesthetic action remains controversial. In addition to non-specific actions of hydrophobic substances on the membrane, specific effects of volatile anesthetics on neuronal activity have been reported. In the present study, effects of enflurane on the chloride currents (ICl) induced by L-glutamic acid (Glu) and acetylcholine (ACh) in isolated Aplysia neurons were examined, using the 'concentration clamp' technique. Enflurane increased the peak amplitude of the ICl induced by low concentrations of Glu but decreased those evoked by higher concentrations of the agonist. The anesthetic accelerated both activation and desensitization phases of the Glu-induced ICl. On the other hand, the ACh-induced ICl in the same neuron was depressed in an uncompetitive manner in the presence of enflurane. The desensitization phase was not affected, although the activation phase became more rapid and the mean open time obtained by noise analysis was shortened. These results suggest the existence of specific steps in the process of activation and desensitization of channels, at which the volatile anesthetic exerts differential effects on the postsynaptic currents.  相似文献   

18.
Wang F  Zhang Y  Jiang X  Zhang Y  Zhang L  Gong S  Liu C  Zhou L  Tao J 《Cell calcium》2011,49(1):12-22
Neuromedin U (NMU) has recently been reported to play a role in nociception. However, to date, the relevant mechanisms still remain unknown. In the present study, we investigated the expression profile of NMU receptors in mouse dorsal root ganglia (DRG) and identified a novel functional role of NMU in modulating T-type Ca(2+) channel currents (T-currents) as well as membrane excitability in small DRG neurons. We found that NMU inhibited T-currents in a dose-dependent manner in mouse small DRG neurons that endogenously expressed NMU type 1 (NMUR1), but not NMUR2 receptors. NMU (1μM) reversibly inhibited T-currents by ~27.4%. This inhibitory effect was blocked by GDP-β-S or pertussis toxin (PTX), indicating the involvement of a G(i/o)α-protein. Using depolarizing prepulse or intracellular application of QEHA, a synthetic peptide which competitively blocks G-protein βγ subunit (G(βγ)) mediated signaling, we found the absence of functional coupling between G(βγ) and T-type Ca(2+) channels. Pretreatment of the cells with H89, a protein kinase A (PKA) inhibitor, or intracellular application of PKI 5-24, blocked NMU-induced T-current inhibition, whereas inhibition of phospholipase C or protein kinase C elicited no such effects. In addition, we observed a significant decreased firing frequency of action potentials of small DRG neurons induced by NMU, which could be abrogated by pretreatment of the cells with NiCl(2) (100 μM). Taken together, these results suggested that NMU inhibits T-currents via PTX-sensitive PKA pathway, which might contribute to its physiological functions including neuronal hypoexcitability in small DRG neurons in mice.  相似文献   

19.
The effects were investigated of allapinine, diterpene alkaloid on ionic currents in voltage-clamped trigeminal neurons and cardiomyocytes isolated from rats. Allapinine application was found to exert an inhibitory effect on inward tetrodotoxin-sensitive sodium currents without changing their voltage dependence. Potential differences between the mechanisms of antiarrhythmic action of diterpene alkaloids and standard antiarrhythmic substances are examined.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Institute of Plant Chemistry, Academy of Sciences of the Uzbek SSR, Tashkent. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 201–206, March–April, 1990.  相似文献   

20.
Ionic currents through aconitine-modified sodium channels of the Ranvier node membrane were measured by a voltage clamp method in an external medium free from sodium ions. A shift of pH of the solution below 4.6 led to the appearance of inward ionic currents, whose kinetics and activation region were characteristic of aconitine-modified sodium channels at low pH. These currents were blocked by the local anesthetic benzocaine in a concentration of 2 mM. Experiments with variation of the concentration of Ca++, Tris+, TEA+, and choline+ in acid sodium-free solutions showed that these cations make no appreciable contribution to the inward current. It is concluded that the inward currents observed under these conditions are carried by H+ (or H3O+) through aconitine-modified sodium channels. From the shifts of reversal potentials of the ionic currents the relative permeability (PH/PNa) for H+ was determined: 1059 ± 88. The results agree with the view that the aconitine-modified sodium channel is a relatively wide water pore, and that movement of H+ through it is limited by its binding with an acid group.Institute of Cytology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 508–516, September–October, 1982.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号