首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The membrane skeleton plays a central role in maintaining the elasticity and stability of the erythrocyte membrane, two biophysical features critical for optimal functioning and survival of red cells. Many constituent proteins of the membrane skeleton are phosphorylated by various kinases, and phosphorylation of β-spectrin by casein kinase and of protein 4.1R by PKC has been documented to modulate erythrocyte membrane mechanical stability. In this study, we show that activation of endogenous PKA by cAMP decreases membrane mechanical stability and that this effect is mediated primarily by phosphorylation of dematin. Co-sedimentation assay showed that dematin facilitated interaction between spectrin and F-actin, and phosphorylation of dematin by PKA markedly diminished this activity. Quartz crystal microbalance measurement revealed that purified dematin specifically bound the tail region of the spectrin dimer in a saturable manner with a submicromolar affinity. Pulldown assay using recombinant spectrin fragments showed that dematin, but not phospho-dematin, bound to the tail region of the spectrin dimer. These findings imply that dematin contributes to the maintenance of erythrocyte membrane mechanical stability by facilitating spectrin-actin interaction and that phosphorylation of dematin by PKA can modulate these effects. In this study, we have uncovered a novel functional role for dematin in regulating erythrocyte membrane function.  相似文献   

2.
The mechanical properties of vertebrate erythrocytes depend on their cytoskeletal protein networks. Membrane skeleton proteins spectrin and protein 4.1 (4.1R) cross-link with actin to maintain membrane stability under mechanical stress. Phosphorylation of 4.1R alters the affinity of 4.1R for spectrin–actin binding and this modulates the mechanical properties of human erythrocytes. In this study, phorbol 12-myristate-13-acetate (PMA)-induced phosphorylation of 4.1R was tested, erythrocyte deformability was determined and the erythrocyte elastic modulus was detected in human, chick, frog and fish. Furthermore, amino acid sequences of the functionally important domains of 4.1R were analyzed. Results showed that PMA-induced phosphorylation of 4.1R decreased erythrocyte deformability and this property was stable after 1 h. The values of Young’s modulus alteration gradually decreased from human to fish (0.388±0.035 kPa, 0.219±0.022 kPa, 0.191±0.036 kPa and 0.141±0.007 kPa). Ser-312 and Ser-331 are located within the consensus sequence recognized by protein kinase C (PKC); however, Ser-331 in zebrafish was replaced by Ala-331. The sequence of the 8 aa motif from vertebrate 4.1R showed only one amino acid mutation in frog and numerous substitutions in fish. Analyses of Young’s modulus suggested that the interaction between 4.1R with the spectrin–actin binding domain may have a special relationship with the development of erythrocyte deformability. In addition, amino acid mutations in 4.1R further supported this relationship. Thus, we hypothesize that alteration of membrane skeleton protein binding affinity may play a potential role in the development of erythrocyte deformability, and alteration of Young’s modulus values may provide a method for determining the deformability development of vertebrate erythrocytes.  相似文献   

3.
Aspectrin-based skeleton uniformly underlies and supports the plasma membrane of the resting platelet, but remodels and centralizes in the activated platelet. alpha-Adducin, a phosphoprotein that forms a ternary complex with F-actin and spectrin, is dephosphorylated and mostly bound to spectrin in the membrane skeleton of the resting platelet at sites where actin filaments attach to the ends of spectrin molecules. Platelets activated through protease-activated receptor 1, FcgammaRIIA, or by treatment with PMA phosphorylate adducin at Ser726. Phosphoadducin releases from the membrane skeleton concomitant with its dissociation from spectrin and actin. Inhibition of PKC blunts adducin phosphorylation and release from spectrin and actin, preventing the centralization of spectrin that normally follows cell activation. We conclude that adducin targets actin filament ends to spectrin to complete the assembly of the resting membrane skeleton. Dissociation of phosphoadducin releases spectrin from actin, facilitating centralization of spectrin, and leads to the exposure of barbed actin filament ends that may then participate in converting the resting platelet's disc shape into its active form.  相似文献   

4.
Adducin is a heteromeric protein with subunits containing a COOH-terminal myristoylated alanine-rich C kinase substrate (MARCKS)-related domain that caps and preferentially recruits spectrin to the fast-growing ends of actin filaments. The basic MARCKS-related domain, present in α, β, and γ adducin subunits, binds calmodulin and contains the major phosphorylation site for protein kinase C (PKC). This report presents the first evidence that phosphorylation of the MARCKS-related domain modifies in vitro and in vivo activities of adducin involving actin and spectrin, and we demonstrate that adducin is a prominent in vivo substrate for PKC or other phorbol 12-myristate 13-acetate (PMA)-activated kinases in multiple cell types, including neurons. PKC phosphorylation of native and recombinant adducin inhibited actin capping measured using pyrene-actin polymerization and abolished activity of adducin in recruiting spectrin to ends and sides of actin filaments. A polyclonal antibody specific to the phosphorylated state of the RTPS-serine, which is the major PKC phosphorylation site in the MARCKS-related domain, was used to evaluate phosphorylation of adducin in cells. Reactivity with phosphoadducin antibody in immunoblots increased twofold in rat hippocampal slices, eight- to ninefold in human embryonal kidney (HEK 293) cells, threefold in MDCK cells, and greater than 10-fold in human erythrocytes after treatments with PMA, but not with forskolin. Thus, the RTPS-serine of adducin is an in vivo phosphorylation site for PKC or other PMA-activated kinases but not for cAMP-dependent protein kinase in a variety of cell types. Physiological consequences of the two PKC phosphorylation sites in the MARCKS-related domain were investigated by stably transfecting MDCK cells with either wild-type or PKC-unphosphorylatable S716A/S726A mutant α adducin. The mutant α adducin was no longer concentrated at the cell membrane at sites of cell–cell contact, and instead it was distributed as a cytoplasmic punctate pattern. Moreover, the cells expressing the mutant α adducin exhibited increased levels of cytoplasmic spectrin, which was colocalized with the mutant α adducin in a punctate pattern. Immunofluorescence with the phosphoadducin-specific antibody revealed the RTPS-serine phosphorylation of adducin in postsynaptic areas in the developing rat hippocampus. High levels of the phosphoadducin were detected in the dendritic spines of cultured hippocampal neurons. Spectrin also was a component of dendritic spines, although at distinct sites from the ones containing phosphoadducin. These data demonstrate that adducin is a significant in vivo substrate for PKC or other PMA-activated kinases in a variety of cells, and that phosphorylation of adducin occurs in dendritic spines that are believed to respond to external signals by changes in morphology and reorganization of cytoskeletal structures.  相似文献   

5.
Adducin is a protein organizing the cortical actin cytoskeleton and a target of RhoA and PKC signaling. However, the role for intercellular cohesion is unknown. We found that adducin silencing induced disruption of the actin cytoskeleton, reduced intercellular adhesion of human keratinocytes, and decreased the levels of the desmosomal adhesion molecule desmoglein (Dsg)3 by reducing its membrane incorporation. Because loss of cell cohesion and Dsg3 depletion is observed in the autoantibody-mediated blistering skin disease pemphigus vulgaris (PV), we applied antibody fractions of PV patients. A rapid phosphorylation of adducin at serine 726 was detected in response to these autoantibodies. To mechanistically link autoantibody binding and adducin phosphorylation, we evaluated the role of several disease-relevant signaling molecules. Adducin phosphorylation at serine 726 was dependent on Ca2+ influx and PKC but occurred independent of p38 MAPK and PKA. Adducin phosphorylation is protective, because phosphorylation-deficient mutants resulted in loss of cell cohesion and Dsg3 fragmentation. Thus, PKC elicits both positive and negative effects on cell adhesion, since its contribution to cell dissociation in pemphigus is well established. We additionally evaluated the effect of RhoA on adducin phosphorylation because RhoA activation was shown to block pemphigus autoantibody-induced cell dissociation. Our data demonstrate that the protective effect of RhoA activation was dependent on the presence of adducin and its phosphorylation at serine 726. These experiments provide novel mechanisms for regulation of desmosomal adhesion by RhoA- and PKC-mediated adducin phosphorylation in keratinocytes.  相似文献   

6.
The membrane protein kinase C (PKC) content was found to be higher in erythrocytes form patients suffering from chronic myelogenous leukemia (CML) compared to normal erythrocytes. PKC activity was also higher in the cytosol and after translocation to the membrane, as assessed by histone phosphorylation. The increased PKC activity in CML erythrocytes was associated with abnormal phosphorylation of protein 4.1. Since phosphorylation-dephosphorylation mechanisms are likely candidates for controlling membrane protein associations, the altered PKC activity may be one of the factors responsible for altered thermal sensitivity and mechanical stability of CML erythrocytes.  相似文献   

7.
The review is focused on the domain structure and function of protein 4.1, one of the proteins belonging to the membrane skeleton. The protein 4.1 of the red blood cells (4.1R) is a multifunctional protein that localizes to the membrane skeleton and stabilizes erythrocyte shape and membrane mechanical properties, such as deformability and stability, via lateral interactions with spectrin, actin, glycophorin C and protein p55. Protein 4.1 binding is modulated through the action of kinases and/or calmodulin-Ca2+. Non-erythroid cells express the 4.1R homologues: 4.1G (general type), 4.1B (brain type), and 4.1N (neuron type), and the whole group belongs to the protein 4.1 superfamily, which is characterized by the presence of a highly conserved FERM domain at the N-terminus of the molecule. Proteins 4.1R, 4.1G, 4.1N and 4.1B are encoded by different genes. Most of the 4.1 superfamily proteins also contain an actin-binding domain. To date, more than 40 members have been identified. They can be divided into five groups: protein 4.1 molecules, ERM proteins, talin-related molecules, protein tyrosine phosphatase (PTPH) proteins and NBL4 proteins. We have focused our attention on the main, well known representatives of 4.1 superfamily and tried to choose the proteins which are close to 4.1R or which have distinct functions. 4.1 family proteins are not just linkers between the plasma membrane and membrane skeleton; they also play an important role in various processes. Some, such as focal adhesion kinase (FAK), non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells, play the role in cell adhesion. The other members control or take part in tumor suppression, regulation of cell cycle progression, inhibition of cell proliferation, downstream signaling of the glutamate receptors, and establishment of cell polarity; some are also involved in cell proliferation, cell motility, and/or cell-to-cell communication.  相似文献   

8.
Zhao KN  Masci PP  Lavin MF 《PloS one》2011,6(12):e28267
Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCδ was activated by phosphorylation on Thr505. Specific inhibition of PKCδ(Thr505) activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCδ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCδ, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCδ. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCδ(Thr505) phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex.  相似文献   

9.
Human erythrocyte protein 4.1 is phosphorylated in vivo by several protein kinases including protein kinase C and cAMP-dependent kinase. We have used cAMP-dependent kinase purified from red cells and protein kinase C purified from brain to test the effects of phosphorylation on band 4.1 function. In solution, each kinase catalyzed the incorporation of 1-4 mol of PO4/mol of band 4.1. Phosphorylation of band 4.1 by each kinase resulted in a significant (50-80%) reduction in the ability of band 4.1 to promote spectrin binding to F-actin. Direct measurement of spectrin-band 4.1 binding showed that phosphorylation by each kinase also caused dramatic reduction in this association. Phosphorylation of band 4.1 by each kinase for increasing time periods enabled us to demonstrate an approximately linear inverse relationship between PO4 incorporation into band 4.1 and spectrin binding. These results show that phosphorylation of band 4.1 by cAMP-dependent kinase and protein kinase C may be central to the regulation of red cell cytoskeletal organization and membrane mechanical properties.  相似文献   

10.
Repeated cocaine administration results in persistent changes in synaptic function in the mesolimbic dopamine system that are thought to be critical for the transition to addiction. Cytoskeletal rearrangement and actin dynamics are essential for this drug-dependent plasticity. Cocaine administration increases levels of F-actin in the nucleus accumbens and is associated with changes in the phosphorylation state of actin-binding proteins. The adducins constitute a family of proteins that interact with actin and spectrin to maintain cellular architecture. The interaction of adducin with these cytoskeletal proteins is regulated by phosphorylation, and it is therefore expected that phosphorylation of adducin may be involved in morphological changes underlying synaptic responses to drugs of abuse including cocaine. In the current study, we characterized the regulation of adducin phosphorylation in the nucleus accumbens and dorsal striatum in response to various regimen of cocaine. Our results demonstrate that adducin is phosphorylated by protein kinase C in medium spiny neurons that express the dopamine D1 receptor. These data indicate that adducin phosphorylation is a signaling event regulated by cocaine administration and further suggest that adducin may be involved in remodeling of the neuronal cytoskeleton in response to cocaine administration.  相似文献   

11.
Gimm JA  An X  Nunomura W  Mohandas N 《Biochemistry》2002,41(23):7275-7282
Protein 4.1R is the prototypical member of a protein family that includes 4.1G, 4.1B, and 4.1N. 4.1R plays a crucial role in maintaining membrane mechanical integrity by binding cooperatively to spectrin and actin through its spectrin-actin-binding (SAB) domain. While the binary interaction between 4.1R and spectrin has been well characterized, the actin binding site in 4.1R remains unidentified. Moreover, little is known about the interaction of 4.1R homologues with spectrin and actin. In the present study, we showed that the 8 aa motif (LKKNFMES) within the 10 kDa spectrin-actin-binding domain of 4.1R plays a critical role in binding of 4.1R to actin. Recombinant 4.1R SAB domain peptides with mutations in this motif showed a marked decrease in their ability to form ternary complexes with spectrin and actin. Binary protein-protein interaction studies revealed that this decrease resulted from the inability of mutant SAB peptides to bind to actin filaments while affinity for spectrin was unchanged. We also documented that the 14 C-terminal residues of the 21 amino acid cassette encoded by exon 16 in conjunction with residues 27-43 encoded by exon 17 constituted a fully functional minimal spectrin-binding motif. Finally, we showed that 4.1N SAB domain was unable to form a ternary complex with spectrin and actin, while 4.1G and 4.1B SAB domains were able to form such a complex but less efficiently than 4.1R SAB. This was due to a decrease in the ability of 4.1G and 4.1B SAB domain to interact with actin but not with spectrin. These data enabled us to propose a model for the 4.1R-spectrin-actin ternary complex which may serve as a general paradigm for regulation of spectrin-based cytoskeleton interaction in various cell types.  相似文献   

12.
The action of purified calcium-dependent proteinases on human erythrocyte membrane skeleton proteins has been examined. Preferential cleavage of proteins 4.1 a and b and band 3 and limited cleavage of alpha- and beta-spectrin occur when either calcium-dependent proteinase I or calcium-dependent proteinase II has access to the cytoplasmic side of the ghost membrane skeleton in the presence of calcium. Thus, when these proteinases are incubated with sealed ghosts they do not cleave these proteins. Leupeptin, mersalyl, the specific cellular protein inhibitor of these enzymes, and calcium chelators can inhibit proteolysis of the red cell ghost proteins by Ca2+-dependent proteinases. Each proteinase has also been loaded into erythrocyte ghosts in the absence of calcium at low ionic strength and subsequently trapped inside by resealing the ghosts. The proteinases were activated by incubating these ghosts in the presence of the calcium ionophore A23187 and calcium. Examination of the ghost proteins by electrophoresis demonstrated calcium-dependent proteolysis of Bands 4.1 and 3 and limited cleavage of alpha- and beta-spectrin similar to that observed on proteolysis of the open, leaky ghosts. In the presence of calcium each calcium-dependent proteinase appears to associate with the erythrocyte ghost membrane.  相似文献   

13.
Gauthier E  Guo X  Mohandas N  An X 《Biochemistry》2011,50(21):4561-4567
The bulk of the red blood cell membrane proteins are partitioned between two multiprotein complexes, one associated with ankyrin R and the other with protein 4.1R. Here we examine the effect of phosphorylation of 4.1R on its interactions with its partners in the membrane. We show that activation of protein kinase C in the intact cell leads to phosphorylation of 4.1R at two sites, serine 312 and serine 331. This renders the 4.1R-associated transmembrane proteins GPC, Duffy, XK, and Kell readily extractable by nonionic detergent with no effect on the retention of band 3 and Rh, both of which also interact with 4.1R. In solution, phosphorlyation at either serine suppresses the capacity of 4.1R to bind to the cytoplasmic domains of GPC, Duffy, and XK. Phosphorylation also exerts an effect on the stability in situ of the ternary spectrin-actin-4.1R complex, which characterizes the junctions of the membrane skeletal network, as measured by the enhanced competitive entry of a β-spectrin peptide possessing both actin- and 4.1R-binding sites. Thus, phosphorylation weakens the affinity of 4.1R for β-spectrin. The two 4.1R phosphorylation sites lie in a domain flanked in the sequence by the spectrin- and actin-binding domain and a domain containing the binding sites for transmembrane proteins. It thus appears that phosphorylation of a regulatory domain in 4.1R results in structural changes transmitted to the functional interaction centers of the protein. We consider possible implications of our findings for the altered membrane function of normal reticulocytes and sickle red cells.  相似文献   

14.
Anthony J. Baines 《Protoplasma》2010,244(1-4):99-131
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins—spectrin, ankyrin, 4.1 and adducin—which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin–ankyrin–4.1–adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin–ankyrin–4.1–adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.  相似文献   

15.
The shape changes and membrane ruffling that accompany neutrophil activation are dependent on the assembly and reorganization of the actin cytoskeleton, the molecular basis of which remains to be clarified. A role of protein kinase C (PKC) has been postulated because neutrophil activation, with the attendant shape and membrane ruffling changes, can be initiated by phorbol esters, known activators of PKC. It has become apparent, however, that multiple isoforms of PKC with differing substrate specificities exist. To reassess the role of PKC in cytoskeletal reorganization, we compared the effects of diacylglycerol analogs and of PKC antagonists on kinase activity and on actin assembly in human neutrophils. Ruffling of the plasma membrane was assessed by scanning EM, and spatial redistribution of filamentous (F)-actin was assessed by scanning confocal microscopy. Staining with NBD-phallacidin and incorporation of actin into the Triton X-100-insoluble ("cytoskeletal") fraction were used to quantify the formation of (F)-actin. [32P]ATP was used to detect protein phosphorylation in electroporated cells. Exposure of neutrophils to 4 beta-PMA (an activator of PKC) induced protein phosphorylation, membrane ruffling, and assembly and reorganization of the actin cytoskeleton, whereas the 4a-isomer, which is inactive towards PKC, failed to produce any of these changes. Moreover, 1,2-dioctanoylglycerol, mezerein, and 3-(N-acetylamino)-5-(N-decyl-N-methylamino)-benzyl alcohol, which are nonphorbol activators of PKC, also promoted actin assembly. Although these effects were consistent with a role of PKC, the following observations suggested that stimulation of conventional isoforms of the kinase were not directly responsible for actin assembly: (a) Okadaic acid, an inhibitor of phosphatases 1 and 2A, potentiated PMA-induced protein phosphorylation, but not actin assembly; and (b) PMA-induced actin assembly and membrane ruffling were not prevented by the conventional PKC inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, staurosporine, calphostin C, or sphingosine at concentrations that precluded PMA-induced protein phosphorylation and superoxide production. On the other hand, PMA-induced actin assembly was inhibited by long-chain fatty acid coenzyme A esters, known inhibitors of nuclear PKC (nPKC). We conclude that PMA-induced actin assembly is unlikely to be mediated by the conventional isoforms of PKC, but may be mediated by novel isoforms of the kinase such as nPKC.  相似文献   

16.
Epidermal growth factor (EGF) induces rapid actin filament assembly in the membrane skeleton of a variety of cells. To investigate the significance of this process for signal transduction, actin polymerization is inhibited by dihydrocytochalasin B (CB). CB almost completely abolishes EGF-induced actin polymerization, as assessed by quantitative confocal laser scanning microscopy. Under these conditions, EGF induces enhanced EGF receptor (EGFR) tyrosine kinase activity, as well as superinduction of the c-fosproto-oncogene. These data suggest that EGF-induced actin polymerization may be important for negative feedback regulation of signal transduction by the EGFR. The phosphorylation of Thr654by protein kinase C (PKC) is a well-characterized negative feedback control mechanism for signal transduction by the EGFR tyrosine kinase. A synthetic peptide, corresponding to the regions flanking Thr654of the EGFR, is used to analyze EGF stimulated PKC activity by incorporation of32P into the peptide. Cotreatment of cells with CB and EGF results in a complete loss of EGF-induced phosphorylation of the peptide. These data suggest that actin polymerization is obligatory for negative feedback regulation of the EGFR tyrosine kinase through the C-kinase pathway.  相似文献   

17.
Two major substrates for human erythrocyte protein kinase C (PK-C) of Mr 120,000 and 110,000, previously named PKC-1 and PKC-2 [Palfrey, H. C. & Waseem, A. (1985) J. Biol. Chem. 260, 16021-16029] have been found to be identical to CaM-BP 103/97 or 'adducin', recently described by K. Gardner and V. Bennett [(1986) J. Biol. Chem. 261, 1339-1348; (1987) Nature (Lond.) 328, 359-362]. These proteins have been purified from the membrane skeleton by high-salt extraction, ion-exchange and gel filtration chromatography. The two proteins co-fractionate in a ratio of approximately 1:1 under a number of conditions suggesting that they exist as a complex. Physicochemical data indicate that the native adducin complex is probably an asymmetric heterodimer of alpha and beta subunits. Adducin binds to a calmodulin (CaM) affinity matrix in a Ca2+-dependent manner and is specifically eluted with EGTA. Fingerprinting of the iodinated peptides derived from the alpha and beta subunits using three different proteases yields 16-37% overlapping peptides, indicating limited similarity between the two polypeptides. Affinity-purified polyclonal antibodies against each protein show little or no cross-reactivity with the other, indicating that the beta subunit is not derived from the alpha subunit or vice versa. Proteins reactive with both anti-(alpha-adducin) and anti-(beta-adducin) antibodies are found in erythrocytes from rat, rabbit, pig, ferret and duck. Immunoblots of adducin after non-ionic detergent extraction of ghosts reveal that a significant fraction of the protein may associate with non-skeleton membrane components. The phosphorylation of adducin is stimulated by both phorbol esters and cAMP analogues in intact erythrocytes. Fingerprinting suggests that protein kinase C preferentially phosphorylates four distinct sites on the two proteins. Phosphopeptide maps of alpha-adducin are virtually identical to those of beta-adducin after phorbol ester stimulation of intact cells, or after PK-C-catalyzed phosphorylation of the purified protein, indicating strong local similarities in the two proteins. Such maps also suggest that cAMP-dependent protein kinase (cAMP-PK) modifies adducin at some similar and some distinct sites as those modified by PK-C. In vitro phosphorylation of isolated adducin by purified PK-C results in rapid incorporation of phosphate to a final level of approximately 1.5 mol/mol in both alpha and beta subunits.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
B M Turner  S Davies 《FEBS letters》1986,197(1-2):41-44
Monoclonal antibody 3C5 recognizes a family of proteins in the nuclei of cultured cells [(1985) Eur. J. Cell Biol. 38, 344]. This antibody has now been shown to recognize equivalent proteins in liver nuclei and in the Triton-insoluble fraction of tissue extracts. In human erythrocytes the antibody recognized a single protein, present in the membrane skeleton fraction and with the molecular mass and extraction properties of beta-spectrin. The epitope recognized by 3C5 was destroyed by alkaline phosphatase. We conclude that this antibody recognizes a phosphorylation site shared by nuclear proteins and a protein of the erythrocyte membrane skeleton, probably beta-spectrin.  相似文献   

19.
In a previous study, we showed that activation of protein kinase C (PKC) prevents oligodendrocyte differentiation at the pro-oligodendrocyte stage. The present study was undertaken to identify downstream targets of PKC action in oligodendrocyte progenitor cells. Activation of PKC induced the predominant phosphorylation of an 80-kD protein, identified as myristoylated alanine-rich C-kinase substrate (MARCKS). Upon phosphorylation, MARCKS is translocated from the plasma membrane to the cytosol. Furthermore, PKC activation perturbed the organization of the actin cytoskeleton, causing a redistribution of actin filaments to the submembranous or cortical actin cytoskeleton. As a consequence, transport of a protein traffic marker, the vesicular stomatitis virus glycoprotein, from the trans-Golgi network to the plasma membrane becomes perturbed. The effect of disruption of the actin filament network by cytochalasin D perfectly matched the effect of PKC. These data thus favor the existence of a causal relationship between actin rearrangement and docking and/or fusion of proteins to the plasma membrane. Interestingly, neither in control cells nor in PKC-activated cells did another protein traffic marker, influenza hemagglutinin (HA), reach the cell surface. However, an eminent and specific accumulation of HA just underneath the plasma membrane became apparent upon PKC activation. Yet, this effect could not be simulated by cytochalasin D treatment. Therefore, these observations imply that although MARCKS represents a prominent PKC target site in regulating differentiation, another target involves the differential control of cognate polarized trafficking pathways, which are apparently operating in oligodendrocyte progenitor cells.  相似文献   

20.
Erythrocyte adducin is a membrane skeletal protein that binds to calmodulin, is a major substrate for protein kinase C, and associates preferentially with spectrin-actin complexes. Erythrocyte adducin also promotes association of spectrin with actin, and this activity is inhibited by calmodulin. This study describes the isolation and characterization of a brain peripheral membrane protein closely related to erythrocyte adducin. Brain and erythrocyte adducin have at least 50% antigenic sites in common, each contains a protease-resistant core of Mr = 48,000-48,500, and both proteins are comprised of two partially homologous polypeptides of Mr = 103,000 and 97,000 (erythrocytes) and Mr = 104,000 and 107,000-110,000 (brain). Brain and erythrocyte adducin associate preferentially with spectrin-actin complexes as compared to spectrin or actin alone, and both proteins also promote binding of spectrin to actin. Brain adducin binds calmodulin in a calcium-dependent manner, although the Kd of 1.3 microM is weaker by 5-6-fold than the Kd of erythrocyte adducin for calmodulin. Brain adducin is a substrate for protein kinase C in vitro and can accept up to 2 mol of phosphate/mol of protein. Adducin provides a potential mechanism in cells for mediating site-directed assembly of additional spectrin molecules and possibly other proteins at the spectrin-actin junction. Brain tissue contains 12 pmol of adducin/mg of membrane protein, which is the most of any tissue examined other than erythrocytes, which have 50 pmol/mg. The presence of high amounts of adducin in brain suggests some role for this protein in specialized activities of nerve cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号