首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Mg2+ on the Ca2+ binding to rabbit fast skeletal troponin C and the CA2+ dependence of myofibrillar ATPase activity was studied in the physiological state where troponin C was incorporated into myofibrils. The Ca2+ binding to troponin C in myofibrils was measured directly by 45Ca using the CDTA-treated myofibrils as previously reported (Morimoto, S. and Ohtsuki, I. (1989) J. Biochem. 105, 435-439). It was found that the Ca2+ binding to the low and high affinity sites of troponin C in myofibrils was affected by Mg2+ competitively and the Ca2(+)- and Mg2(+)-binding constants were 6.20 x 10(6) and 1.94 x 10(2) M-1, respectively, for the low affinity sites, and 1.58 x 10(8) and 1.33 x 10(3) M-1, respectively, for the high affinity sites. The Ca2+ dependence of myofibrillar ATPase was also affected by Mg2+, with the apparent Ca2(+)- and Mg2(+)-binding constants of 1.46 x 10(6) and 276 x 10(2) M-1, respectively, suggesting that the myofibrillar ATPase was modulated through a competitive action of Mg2+ on Ca2+ binding to the low affinity sites, though the Ca2+ binding to the low affinity sites was not simply related to the myofibrillar ATPase.  相似文献   

2.
Troponin C was removed almost completely from the porcine cardiac myofibrils by the same extraction procedure using CDTA as that previously reported for the rabbit skeletal myofibrils (Morimoto, S. & Ohtsuki, I. (1987) J. Biochem. 101, 291-301), and the effects of substitution of troponin C in cardiac myofibrils with rabbit skeletal troponin C or bovine brain calmodulin were examined. While the ATPase activity of intact cardiac myofibrils or cardiac troponin C-reconstituted cardiac myofibrils was activated at only a little higher concentration of Sr2+ than Ca2+, the skeletal troponin C-substituted cardiac myofibrils, as well as intact rabbit skeletal myofibrils, required more than 10 times higher concentration of Sr2+ than Ca2+ for activation of the myofibrillar ATPase activity. However, the concentrations of Ca2+ and Sr2+ required for the activation of the ATPase activity of the skeletal troponin C-substituted cardiac myofibrils were both about 5 times higher than those of intact skeletal myofibrils. The skeletal troponin C-substituted cardiac myofibrils, as well as intact skeletal myofibrils, also showed higher cooperativity in the Ca2+-activation of the ATPase activity than intact or cardiac troponin C-reconstituted cardiac myofibrils. The ATPase activity of calmodulin-substituted cardiac myofibrils was activated at a several times lower concentration of Ca2+ or Sr2+ than that of calmodulin-substituted skeletal myofibrils, while the ratios of the concentration of Sr2+ to Ca2+ required for activation were almost the same in both cases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
R E Johnson 《FEBS letters》1988,232(2):289-292
It was previously shown that when rabbit skeletal myofibrils are titrated with Mg2+ AMPPNP under conditions that result in the dissociation of cross-bridges from the thin filaments (i.e. 50% ethylene glycol, 0 degrees C), Ca2+-sensitive, biphasic binding is observed. These titrations have been repeated using myofibrils from which the troponin C has been selectively removed. The disappearance of both Ca2+ sensitivity and biphasic binding is taken as evidence that the Ca2+ sensitivity is due to Ca2+ binding to troponin C and the biphasic binding of Mg2+ AMPPNP observed in intact myofibrils is not due to packing constraints or steric hindrance.  相似文献   

4.
5.
The Ca(2+)/Mg(2+) sites (III and IV) located in the C-terminal domain of cardiac troponin C (cTnC) have been generally considered to play a purely structural role in keeping the cTnC bound to the thin filament. However, several lines of evidence, including the discovery of cardiomyopathy-associated mutations in the C-domain, have raised the possibility that these sites may have a more complex role in contractile regulation. To explore this possibility, the ATPase activity of rat cardiac myofibrils was assayed under conditions in which no Ca(2+) was bound to the N-terminal regulatory Ca(2+)-binding site (site II). Myosin-S1 was treated with N-ethylmaleimide to create strong-binding myosin heads (NEM-S1), which could activate the cardiac thin filament in the absence of Ca(2+). NEM-S1 activation was assayed at pCa 8.0 to 6.5 and in the presence of either 1mM or 30 μM free Mg(2+). ATPase activity was maximal when sites III and IV were occupied by Mg(2+) and it steadily declined as Ca(2+) displaced Mg(2+). The data suggest that in the absence of Ca(2+) at site II strong-binding myosin crossbridges cause the opening of more active sites on the thin filament if the C-domain is occupied by Mg(2+) rather than Ca(2+). This finding could be relevant to the contraction-relaxation kinetics of cardiac muscle. As Ca(2+) dissociates from site II of cTnC during the early relaxing phase of the cardiac cycle, residual Ca(2+) bound at sites III and IV might facilitate the switching off of the thin filament and the detachment of crossbridges from actin.  相似文献   

6.
7.
Calcium binding to chicken recombinant skeletal muscle TnC (TnC) and its mutants containing tryptophan (F29W), 5-hydroxytryptophan (F29HW), or 7-azatryptophan (F29ZW) at position 29 was measured by flow dialysis and by fluorescence. Comparative analysis of the results allowed us to determine the influence of each amino acid on the calcium binding properties of the N-terminal regulatory domain of the protein. Compared with TnC, the Ca(2+) affinity of N-terminal sites was: 1) increased 6-fold in F29W, 2) increased 3-fold in F29ZW, and 3) decreased slightly in F29HW. The Ca(2+) titration of F29ZW monitored by fluorescence displayed a bimodal curve related to sequential Ca(2+) binding to the two N-terminal Ca(2+) binding sites. Single and double mutants of TnC, F29W, F29HW, and F29ZW were constructed by replacing aspartate by alanine at position 30 (site I) or 66 (site II) or both. Ca(2+) binding data showed that the Asp --> Ala mutation at position 30 impairs calcium binding to site I only, whereas the Asp --> Ala mutation at position 66 impairs calcium binding to both sites I and II. Furthermore, the Asp --> Ala mutation at position 30 eliminates the differences in Ca(2+) affinity observed for replacement of Phe at position 29 by Trp, 5-hydroxytryptophan, or 7-azatryptophan. We conclude that position 29 influences the affinity of site I and that Ca(2+) binding to site I is dependent on the previous binding of metal to site II.  相似文献   

8.
The Ca2+-sensitive ATPase activity of rabbit skeletal myofibrils disappeared completely after treatment with a solution containing CDTA, a strong divalent cation chelator, at a low ionic strength. A gel electrophoretic study revealed that all troponin C and about half of myosin light chain 2 were removed from the myofibrils by the CDTA treatment. The CDTA-treated myofibrils, when reconstituted with skeletal troponin C, showed almost exactly the same Ca2+- or Sr2+-sensitive ATPase activity as that of intact myofibrils. The CDTA-treated myofibrils reconstituted with porcine cardiac troponin C showed the same Ca2+- or Sr2+-sensitivity of the ATPase as that of porcine cardiac myofibrils; Sr2+-sensitivity relative to Ca2+-sensitivity was about ten times higher than, and the maximal slope of the activation curve was about half that of skeletal myofibrils. These findings indicate that these characteristic features of divalent cation regulation in the contraction of skeletal and cardiac muscles are determined solely by the species of troponin C. Bovine brain calmodulin hardly activated the ATPase activity of the CDTA-treated myofibrils even in the presence of Ca2+. Excess calmodulin, however, was found to give Ca2+- or Sr2+-sensitivity to the ATPase activity of the CDTA-treated myofibrils. Frog skeletal parvalbumins 1 and 2, even in excess, did not affect the ATPase activity of the CDTA-treated myofibrils.  相似文献   

9.
The kinetics of Ca2+-dependent conformational changes of human cardiac troponin (cTn) were studied on isolated cTn and within the sarcomeric environment of myofibrils. Human cTnC was selectively labeled on cysteine 84 with N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole and reconstituted with cTnI and cTnT to the cTn complex, which was incorporated into guinea pig cardiac myofibrils. These exchanged myofibrils, or the isolated cTn, were rapidly mixed in a stopped-flow apparatus with different [Ca2+] or the Ca2+-buffer 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid to determine the kinetics of the switch-on or switch-off, respectively, of cTn. Activation of myofibrils with high [Ca2+] (pCa 4.6) induced a biphasic fluorescence increase with rate constants of >2000 s−1 and ∼330 s−1, respectively. At low [Ca2+] (pCa 6.6), the slower rate was reduced to ∼25 s−1, but was still ∼50-fold higher than the rate constant of Ca2+-induced myofibrillar force development measured in a mechanical setup. Decreasing [Ca2+] from pCa 5.0-7.9 induced a fluorescence decay with a rate constant of 39 s−1, which was approximately fivefold faster than force relaxation. Modeling the data indicates two sequentially coupled conformational changes of cTnC in myofibrils: 1), rapid Ca2+-binding (kB ≈ 120 μM−1 s−1) and dissociation (kD ≈ 550 s−1); and 2), slower switch-on (kon = 390s−1) and switch-off (koff = 36s−1) kinetics. At high [Ca2+], ∼90% of cTnC is switched on. Both switch-on and switch-off kinetics of incorporated cTn were around fourfold faster than those of isolated cTn. In conclusion, the switch kinetics of cTn are sensitively changed by its structural integration in the sarcomere and directly rate-limit neither cardiac myofibrillar contraction nor relaxation.  相似文献   

10.
Binding of Ca2+ to the troponin C (TnC) subunit of troponin is necessary for tension development in skeletal and cardiac muscles. Tension was measured in skinned fibers from rabbit skeletal muscle at various [Ca2+] before and after partial substitution of skeletal TnC with cardiac TnC. Following substitution, the tension-pCa relationship was altered in a manner consistent with the differences in the number of low-affinity Ca2+-binding sites on the two types of TnC and their affinities for Ca2+. The alterations in the tension-pCa relationship were for the most part reversed by reextraction of cardiac TnC and readdition of skeletal TnC into the fiber segments. These findings indicate that the type of TnC present plays an important role in determining the Ca2+ dependence of tension development in striated muscle.  相似文献   

11.
J Gulati  S Scordilis  A Babu 《FEBS letters》1988,236(2):441-444
The presence of protein kinase C (PKC), a key enzyme in signal transduction, has not been investigated in fungal cells. The phorbol ester TPA, an activator of PKC, may be used as an indicator of the presence and role of PKC in Phycomyces blakesleeanus spores. Activation of spore germination by acetate was prevented by 6 nM TPA. The TPA analog 4 alpha PDD, an ineffective activator of PKC, did not affect spore germination. 3 mM dbcAMP, on the other hand, reversed the inhibition of germination caused by TPA. TPA-stimulated protein kinase activity was detected in spores. The possible relationship between PKC and the increased levels of cAMP that accompany the induction of spore germination is discussed.  相似文献   

12.
The two cysteine residues (Cys-35 and Cys-84) of bovine cardiac troponin C (cTnC) were labeled with the pyrene-containing SH-reactive compounds, N-(1-pyrene) maleimide, and N-(1-pyrene)iodoacetamide in order to study conformational changes in the regulatory domain of cTnC associated with cation binding and cross-bridge attachment. The labeled cTnC exhibits the characteristic fluorescence spectrum of pyrene with two sharp monomer fluorescence peaks and one broad excimer fluorescence peak. The excimer fluorescence results from dimerization of adjacent pyrene groups. With metal binding (Mg2+ or Ca2+) to the high affinity sites of cTnC (sites III and IV), there is a small decrease in monomer fluorescence but no effect on excimer fluorescence. In contrast, Ca2+ binding to the low affinity regulatory (site II) site elicits an increase in monomer fluorescence and a reduction in excimer fluorescence. These results can be accounted for by assuming that the pyrene attached to Cys-84 is drawn into a hydrophobic pocket formed by the binding of Ca2+ to site II. When the labeled cTnC is incorporated into the troponin complex or substituted into cardiac myofibrils the monomer fluorescence is enhanced while the excimer fluorescence is reduced. This suggests that the association with other regulatory components in the thin filament might influence the proximity (or mobility) of the two pyrene groups in a way similar to that of Ca2+ binding. With the binding of Ca2+ to site II the excimer fluorescence is further reduced while the monomer fluorescence is not changed significantly. In myofibrils, cross-bridge detachment (5 mM MgATP, pCa 8.0) causes a reduction in monomer fluorescence but has no effect on excimer fluorescence. However, saturation of the cTnC with Ca2+ reduces excimer fluorescence but causes no further change in monomer fluorescence. Thus, the pyrene fluorescence spectra define the different conformations of cTnC associated with weak-binding, cycling, and rigor cross-bridges.  相似文献   

13.
14.
L Massom  H Lee  H W Jarrett 《Biochemistry》1990,29(3):671-681
Binding of trifluoperazine (TFP), a phenothiazine tranquilizer, to porcine brain calmodulin (CaM) and rabbit skeletal muscle troponin C (Tn C) was measured by an automated high-performance liquid chromatography binding assay using a molecular sieving column; 10 micrograms of either protein per injection is sufficient for determining TFP binding, and results are comparable to those obtained by equilibrium dialysis. Very little binding was observed to either protein in the absence of Ca2+ while in the presence of Ca2+ both proteins bind 4 equiv of TFP. Other characteristics of TFP binding however are different for each protein. For CaM, half-maximal binding occurs at 5.8 microM TFP, the Hill coefficient is 0.82, and the fit of the data to the Scatchard equation is consistent with four independent TFP-binding sites. Binding of one melittin displaces two TFP from CaM. Thus, there are two recognizable classes of TFP-binding sites: those that are displaced by melittin and those that are not. TFP causes an increase in the Ca2+ affinity of CaM, and three Ca2+ must be bound to CaM for TFP binding to occur. The studies also yielded a measure of the intrinsic affinity of three of CaM's Ca2(+)-binding sites that is in agreement with previous reports. For troponin C, half-maximal binding occurs at 16 microM TFP, the Hill coefficient is 1.7, and the data best fit the Adair equation for four binding sites. The measured constants K1, K2, K3, and K4 were 2.5 X 10(4), 6.6 X 10(3), 5.8 X 10(5), and 2.0 X 10(5) M-1, respectively, in 1 mM Ca2+ and were similar when Mg2+ was additionally included. TFP also increases troponin C's Ca2+ affinity, and it is the low-affinity, Ca2(+)-specific binding sites that are affected. These studies yielded a measure of the intrinsic affinity of these Ca2(+)-binding sites that is in agreement with previous measurements.  相似文献   

15.
Inhibition of muscle force development by acidic pH is a well known phenomenon, yet the exact mechanism by which a decrease in pH inhibits the Ca2+-activated force in striated myofilaments remains poorly understood. Whether or not the deactivation by acidic pH involves direct competition between Ca2+ and protons for regulatory binding sites on fast skeletal troponin C (TnC) or whether other proteins in thin filament regulation are important remains unclear. We measured the effects of acidic pH on Ca2+-dependent fluorescent changes in TnC labeled with the probe danzylaziridine (Danz), which reports Ca2+ binding to the regulatory (Ca2+-specific) sites. Measurements were also made with TnCDanz complexed with the inhibitory Tn unit, TnI, and in the whole Tn complex. Our results show that a drop in pH from 7.0 to 6.5 is associated with a 1.6-fold increase in the midpoint for the relation between free Ca2+ and Ca2+ binding to the regulatory sites on TnCDanz. However, when TnCDanz was present in its complex with either TnI alone or with TnI-TnT, the increase in midpoint free Ca2+ was increased by 3.5-fold. We tested whether this potentiation in the effect of acidic pH on Ca2+ binding to TnC is due to a pH-induced alteration in the binding of TnI to TnC. A decrease in pH from 7.0 to 6.5 was associated with a halving of the affinity of TnI for TnC. We also probed the effect of acidic pH on TnI. This was done (i) by measuring the intrinsic fluorescence of tryptophan residues in TnI alone and (ii) by measuring fluorescence of TnI (in the Tn complex) labeled at Cys-133 with 5-iodoacetamidofluorescein. A drop in pH from 7.0 to 6.5 was associated with a 15% decrease in intrinsic fluorescence and with a 30% decrease in the fluorescence of the 5-iodoacetamidofluorescein probe. We conclude, therefore, that while protons and Ca2+ may directly affect Ca2+ binding to regulatory sites on fast skeletal TnC, the effect of acidic pH on TnC Ca2+ binding is amplified in the TnI-TnC and Tn complexes by a pH-related effect on the affinity of TnI for TnC.  相似文献   

16.
In maximally activated skinned fibers, the rate of tension redevelopment (ktr) following a rapid release and restretch is determined by the maximal rate of cross-bridge cycling. During submaximal Ca2+ activations, however, ktr regulation varies with thin filament dynamics. Thus, decreasing the rate of Ca2+ dissociation from TnC produces a higher ktr value at a given tension level (P), especially in the [Ca2+] range that yields less than 50% of maximal tension (Po). In this study, native rabbit TnC was replaced with chicken recombinant TnC, either wild-type (rTnC) or mutant (NHdel), with decreased Ca2+ affinity and an increased Ca2+ dissociation rate (koff). Despite marked differences in Ca2+ sensitivity (>0.5 DeltapCa50), fibers reconstituted with either of the recombinant proteins exhibited similar ktr versus tension profiles, with ktr low (1-2 s-1) and constant up to approximately 50% Po, then rising sharply to a maximum (16 +/- 0.8 s-1) in fully activated fibers. This behavior is predicted by a four-state model based on coupling between cross-bridge cycling and thin filament regulation, where Ca2+ directly affects only individual thin filament regulatory units. These data and model simulations confirm that the range of ktr values obtained with varying Ca2+ can be regulated by a rate-limiting thin filament process.  相似文献   

17.
Single fibers from glycerinated rabbit psoas muscle were treated with a solution containing CDTA, a strong chelator of metal ions. The CDTA-treated fibers lost all of the troponin C and showed no Ca2+-activated tension development. The addition of troponin C restored the Ca2+-activated tension of CDTA-treated fibers. The tension-pCa relationship in the case of the CDTA-treated fibers reconstituted with troponin C was almost the same as that in the case of the same fibers before the CDTA treatment. These results are consistent with those of the previous study on the Ca2+-activated ATPase of CDTA-treated rabbit skeletal myofibrils.  相似文献   

18.
BackgroundCharacterizing the thermodynamic parameters behind metal-biomolecule interactions is fundamental to understanding the roles metal ions play in biology. Isothermal Titration Calorimetry (ITC) is a “gold-standard” for obtaining these data. However, in addition to metal-protein binding, additional equilibria such as metal-buffer interactions must be taken into consideration prior to making meaningful comparisons between metal-binding systems.MethodsIn this study, the thermodynamics of Ca2+ binding to three buffers (Bis-Tris, MES, and MOPS) were obtained from Ca2+-EDTA titrations using ITC. These data were used to extract buffer-independent parameters for Ca2+ binding to human cardiac troponin C (hcTnC), an EF-hand containing protein required for heart muscle contraction.ResultsThe number of protons released upon Ca2+ binding to the C– and N-domain of hcTnC were found to be 1.1 and 1.2, respectively. These values permitted determination of buffer-independent thermodynamic parameters of Ca2+-hcTnC binding, and the extracted data agreed well among the buffers tested. Both buffer and pH-adjusted parameters were determined for Ca2+ binding to the N-domain of hcTnC and revealed that Ca2+ binding under aqueous conditions and physiological ionic strength is both thermodynamically favorable and driven by entropy.ConclusionsTaken together, the consistency of these data between buffer systems and the similarity between theoretical and experimental proton release is indicative of the reliability of the method used and the importance of extracting metal-buffer interactions in these studies.General significanceThe experimental approach described herein is clearly applicable to other metal ions and other EF-hand protein systems.  相似文献   

19.
Changes in skeletal troponin C (sTnC) structure during thin filament activation by Ca2+ and strongly bound cross-bridge states were monitored by measuring the linear dichroism of the 5' isomer of iodoacetamidotetramethylrhodamine (5'IATR), attached to Cys98 (sTnC-5'ATR), in sTnC-5'ATR reconstituted single skinned fibers from rabbit psoas muscle. To isolate the effects of Ca2+ and cross-bridge binding on sTnC structure, maximum Ca2+-activated force was inhibited with 0.5 mM AlF4- or with 30 mM 2,3 butanedione-monoxime (BDM) during measurements of the Ca2+ dependence of force and dichroism. Dichroism was 0.08 +/- 0.01 (+/- SEM, n = 9) in relaxing solution (pCa 9.2) and decreased to 0.004 +/- 0.002 (+/- SEM, n = 9) at pCa 4.0. Force and dichroism had similar Ca2+ sensitivities. Force inhibition with BDM caused no change in the amplitude and Ca2+ sensitivity of dichroism. Similarly, inhibition of force at pCa 4.0 with 0.5 mM AlF4- decreased force to 0.04 +/- 0.01 of maximum (+/- SEM, n = 3), and dichroism was 0.04 +/- 0.03 (+/- SEM, n = 3) of the value at pCa 9.2 and unchanged relative to the corresponding normalized value at pCa 4.0 (0.11 +/- 0.05, +/- SEM; n = 3). Inhibition of force with AlF4- also had no effect when sTnC structure was monitored by labeling with either 5-dimethylamino-1-napthalenylsulfonylaziridine (DANZ) or 4-(N-(iodoacetoxy)ethyl-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (NBD). Increasing sarcomere length from 2.5 to 3.6 microm caused force (pCa 4.0) to decrease, but had no effect on dichroism. In contrast, rigor cross-bridge attachment caused dichroism at pCa 9.2 to decrease to 0.56 +/- 0.03 (+/- SEM, n = 5) of the value at pCa 9. 2, and force was 0.51 +/- 0.04 (+/- SEM, n = 6) of pCa 4.0 control. At pCa 4.0 in rigor, dichroism decreased further to 0.19 +/- 0.03 (+/- SEM, n = 6), slightly above the pCa 4.0 control level; force was 0.66 +/- 0.04 of pCa 4.0 control. These results indicate that cross-bridge binding in the rigor state alters sTnC structure, whereas cycling cross-bridges have little influence at either submaximum or maximum activating [Ca2+].  相似文献   

20.
The interactions between troponin I and troponin C are central to the Ca(2+)-regulated control of striated muscle. Using isothermal titration microcalorimetry we have studied the binding of human cardiac troponin C (cTnC) and its isolated domains to human cardiac troponin I (cTnI). We provide the first binding data for these proteins while they are free in solution and unmodified by reporter groups. Our data reveal that the C-terminal domain of cTnC is responsible for most of the free energy change upon cTnC.cTnI binding. Importantly, the interaction between cTnI and the C-terminal domain of cTnC is 8-fold stronger in the presence of Ca(2+) than in the presence of Mg(2+), suggesting that the C-terminal domain of cTnC may play a modulatory role in cardiac muscle regulation. Changes in the affinity of cTnI for cTnC and its isolated C-terminal domain in response to ionic strength support this finding, with both following similar trends. At physiological ionic strength the affinity of cTnC for cTnI changed very little in response to Ca(2+), although the thermodynamic data show a clear distinction between binding in the presence of Ca(2+) and in the presence of Mg(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号