首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of monoclonal antibodies as commercial therapeutics poses substantial demands on stability and properties of an antibody. Therapeutic molecules that exhibit favorable properties increase the success rate in development. However, it is not yet fully understood how the protein sequences of an antibody translates into favorable in vitro molecule properties. In this work, computational design strategies based on heuristic sequence analysis were used to systematically modify an antibody that exhibited a tendency to precipitation in vitro. The resulting series of closely related antibodies showed improved stability as assessed by biophysical methods and long-term stability experiments. As a notable observation, expression levels also improved in comparison with the wild-type candidate. The methods employed to optimize the protein sequences, as well as the biophysical data used to determine the effect on stability under conditions commonly used in the formulation of therapeutic proteins, are described. Together, the experimental and computational data led to consistent conclusions regarding the effect of the introduced mutations. Our approach exemplifies how computational methods can be used to guide antibody optimization for increased stability.  相似文献   

2.
Polyvalent antigen display is an effective strategy to enhance the immunogenicity of subunit vaccines by clustering them in an array‐like manner on a scaffold system. This strategy results in a higher local density of antigens, increased high avidity interactions with B cells and other antigen presenting cells, and therefore a more effective presentation of vaccine antigens. In this study, we used lumazine synthase (LS), an icosahedral symmetry capsid derived from Bacillus anthracis, as a scaffold to present 60 copies of a linear B cell epitope (PB10) from the ricin toxin fused to the C terminus of LS via four different linkers. We then investigated the effects of linker length, linker rigidity and formaldehyde crosslinking on the protein assembly, conformational integrity, thermal stability, in vitro antibody binding, and immunogenicity in mice. Fusion of the PB10 peptide onto LS, with varying linker lengths, did not affect protein assembly, thermal stability or exposure of the epitope, but had a minor impact on protein conformation. Formaldehyde crosslinking considerably improved protein thermal stability with only minor impact on protein conformation. All LS_PB10 constructs, when administered to mice by injection without adjuvant, elicited measurable anti‐ricin serum IgG titers, although the titers were not sufficient to confer protection against a 10× lethal dose ricin challenge. This work sheds light on the biophysical properties, immunogenicity and potential feasibility of LS from B. anthracis as a scaffold system for polyvalent antigen display.  相似文献   

3.
Antibody stability is very important for expression, activity, specificity, and storage. This knowledge of antibody structure has made it possible for a computer‐aided molecule design to be used to optimize and increase antibody stability. Many computational methods have been built based on knowledge or structure, however, a good integrated engineering system has yet to be developed that combines these methods. In the current study, we designed an integrated computer‐aided engineering protocol, which included several successful methods. Mutants were designed considering factors that affected stability and multiwall filter screening was used to improve the design accuracy. Using this protocol, the thermo‐stability of an anti‐hVEGF antibody was significantly improved. Nearly 40% of the single‐point mutants proved to be more stable than the parent antibody and most of the mutations could be stacked effectively. The T50 also improved about 7°C by combinational mutation of seven sites in the light chain and three sites in the heavy chain. Data indicate that the protocol is an effective method for optimization of antibody structure, especially for improving thermo‐stability. This protocol could also be used to enhance the stability of other antibodies. Proteins 2014; 82:2620–2630. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
While reverse genetics and functional genomics have long affirmed the role of individual mutations in determining protein function, there have been fewer studies addressing how large‐scale changes in protein sequences, such as in entire modular segments, influence protein function and evolution. Given how recombination can reassort protein sequences, these types of changes may play an underappreciated role in how novel protein functions evolve in nature. Such studies could aid our understanding of whether certain organismal phenotypes related to protein function—such as growth in the presence or absence of an antibiotic—are robust with respect to the identity of certain modular segments. In this study, we combine molecular genetics with biochemical and biophysical methods to gain a better understanding of protein modularity in dihydrofolate reductase (DHFR), an enzyme target of antibiotics also widely used as a model for protein evolution. We replace an integral α‐helical segment of Escherichia coli DHFR with segments from a number of different organisms (many nonmicrobial) and examine how these chimeric enzymes affect organismal phenotypes (e.g., resistance to an antibiotic) as well as biophysical properties of the enzyme (e.g., thermostability). We find that organismal phenotypes and enzyme properties are highly sensitive to the identity of DHFR modules, and that this chimeric approach can create enzymes with diverse biophysical characteristics.  相似文献   

5.
Generating stable antibodies is an important goal in the development of antibody-based drugs. Often, thermal stability is assumed predictive of overall stability. To test this, we used different internally created antibodies and first studied changes in antibody structure as a function of pH, using the dye ANS. Comparison of the pH(50) values, the midpoint of the transition from the high-pH to the low-pH conformation, allowed us for the first time to rank antibodies based on their pH stability. Next, thermal stability was probed by heating the protein in the presence of the dye Sypro Orange. A new data analysis method allowed extraction of all three antibody unfolding transitions and showed close correspondence to values obtained by differential scanning calorimetry. T(1%) , the temperature at which 1% of the protein is unfolded, was also determined. Importantly, no correlations could be found between thermal stability and pH(50) , suggesting that to accurately quantify antibody stability, different measures of protein stability are necessary. The experimental data were further analyzed using a machine-learning approach with a trained model that allowed the prediction of biophysical stability using primary sequence alone. The pH stability predictions proved most successful and were accurate to within pH ±0.2.  相似文献   

6.
By combining the knowledge gained from an analysis of the biophysical properties of natural antibody variable domains, the effects of mutations obtained in directed evolution experiments, and the detailed structural comparison of antibodies, it has now become possible to engineer antibodies for higher thermodynamic stability and more efficient folding. This is particularly important when antibodies are to be used under conditions where the disulfide bonds cannot form, i.e., in intracellular applications (as "intrabodies"). We describe in detail two methods for the knowledge-based improvement of antibody stability and folding efficiency. While CDR grafting from a non-human to the most closely related human antibody framework is an established technique to reduce the immunogenicity of a therapeutic antibody, CDR grafting for stabilization implies the use of a more distantly related acceptor framework with superior biophysical characteristics. The use of such dissimilar frameworks requires particular attention to antigen contact residues outside the classical CDR definition and to residues capable of indirectly affecting the conformation of the antigen binding site. As a second alternative, the stability of a suboptimal framework can be improved by the introduction of point mutations designed to optimize key residue interactions. We describe the analysis methods used to identify such point mutations, which can be introduced all at once, while maintaining the framework features necessary for antigen binding. These rational approaches render the continued "rediscovery" of certain mutations by directed evolution unnecessary, but they can also be used in conjunction with such methods to discover even better molecules.  相似文献   

7.
For the past few decades, intensive studies have been carried out in an attempt to understand how the amino acid sequences of proteins encode their three dimensional structures to perform their specific functions. In order to understand the sequence-structure relationship of proteins, several sub-sequence search studies in non-redundant sequence-structure databases have been undertaken which have given some fruitful clues. In our earlier work, we analyzed a set of 3124 non-redundant protein sequences from the Protein Data Bank (PDB) and retrieved 30 identical octapeptides having different secondary structures. These octapeptides were characterized by using different computational procedures. This prompted us to explore the presence of octapeptides with reverse sequences and to analyze whether these octapeptides would adopt similar structures as that of their parent octapeptides. Our identical reverse octapeptide search resulted in the finding of eight octapeptide pairs (octapeptide and reverse octapeptide) with similar secondary structure and 23 octapeptide pairs with different secondary structures. In the present work, the geometrical and biophysical characteristics of identical reverse octapeptides were explored and compared with unrelated octapeptide pairs by using various computational tools. We thus conclude that proteins containing identical reverse octapeptides are not very abundant and residues in the octapeptide pairs do not contribute to the stability of the protein. Furthermore, compared to unrelated octapeptides, identical reverse octapeptides do not show certain biophysical and geometrical properties.  相似文献   

8.
This report describes the design, generation and testing of Ylanthia, a fully synthetic human Fab antibody library with 1.3E+11 clones. Ylanthia comprises 36 fixed immunoglobulin (Ig) variable heavy (VH)/variable light (VL) chain pairs, which cover a broad range of canonical complementarity-determining region (CDR) structures. The variable Ig heavy and Ig light (VH/VL) chain pairs were selected for biophysical characteristics favorable to manufacturing and development. The selection process included multiple parameters, e.g., assessment of protein expression yield, thermal stability and aggregation propensity in fragment antigen binding (Fab) and IgG1 formats, and relative Fab display rate on phage. The framework regions are fixed and the diversified CDRs were designed based on a systematic analysis of a large set of rearranged human antibody sequences. Care was taken to minimize the occurrence of potential posttranslational modification sites within the CDRs. Phage selection was performed against various antigens and unique antibodies with excellent biophysical properties were isolated. Our results confirm that quality can be built into an antibody library by prudent selection of unmodified, fully human VH/VL pairs as scaffolds.  相似文献   

9.
10.
Antibodies represent an important and growing class of biologic research reagents and biopharmaceutical products. They can be used as therapeutics in a variety of diseases. With the rapid expansion of proteomic studies and biomarker discovery, there is a need for the generation of highly specific binding reagents to study the vast number of proteins encoded by the genome. Display technologies provide powerful tools for obtaining antibodies. Aside from the preservation of natural antibody repertoires, they are capable of exploiting diversity by DNA recombination to create very large libraries for selection of novel molecules. In contrast to in vivo immunization processes, display technologies allow selection of antibodies under in vitro-defined selection condition(s), resulting in enrichment of antibodies with desired properties from large populations. In addition, in vitro selection enables the isolation of antibodies against difficult antigens including self-antigens, and this can be applied to the generation of human antibodies against human targets. Display technologies can also be combined with DNA mutagenesis for antibody evolution in vitro. Some methods are amenable to automation, permitting high-throughput generation of antibodies. Ribosome display is considered as representative of the next generation of display technologies since it overcomes the limitations of cell-based display methods by using a cell-free system, offering advantages of screening larger libraries and continuously expanding new diversity during selection. Production of display-derived antibodies can be achieved by choosing one of a variety of prokaryotic and eukaryotic cell-based expression systems. In the near future, cell-free protein synthesis may be developed as an alternative for large-scale generation of antibodies.  相似文献   

11.
Bostrom J  Haber L  Koenig P  Kelley RF  Fuh G 《PloS one》2011,6(4):e17887
The antigen-binding site of Herceptin, an anti-human Epidermal Growth Factor Receptor 2 (HER2) antibody, was engineered to add a second specificity toward Vascular Endothelial Growth Factor (VEGF) to create a high affinity two-in-one antibody bH1. Crystal structures of bH1 in complex with either antigen showed that, in comparison to Herceptin, this antibody exhibited greater conformational variability, also called "structural plasticity". Here, we analyzed the biophysical and thermodynamic properties of the dual specific variants of Herceptin to understand how a single antibody binds two unrelated protein antigens. We showed that while bH1 and the affinity-improved bH1-44, in particular, maintained many properties of Herceptin including binding affinity, kinetics and the use of residues for antigen recognition, they differed in the binding thermodynamics. The interactions of bH1 and its variants with both antigens were characterized by large favorable entropy changes whereas the Herceptin/HER2 interaction involved a large favorable enthalpy change. By dissecting the total entropy change and the energy barrier for dual interaction, we determined that the significant structural plasticity of the bH1 antibodies demanded by the dual specificity did not translate into the expected increase of entropic penalty relative to Herceptin. Clearly, dual antigen recognition of the Herceptin variants involves divergent antibody conformations of nearly equivalent energetic states. Hence, increasing the structural plasticity of an antigen-binding site without increasing the entropic cost may play a role for antibodies to evolve multi-specificity. Our report represents the first comprehensive biophysical analysis of a high affinity dual specific antibody binding two unrelated protein antigens, furthering our understanding of the thermodynamics that drive the vast antigen recognition capacity of the antibody repertoire.  相似文献   

12.
Recombinant antibodies with well-characterized epitopes and known conformational specificities are critical reagents to support robust interpretation and reproducibility of immunoassays across biomedical research. For myocilin, a protein prone to misfolding that is associated with glaucoma and an emerging player in other human diseases, currently available antibodies are unable to differentiate among the numerous disease-associated protein states. This fundamentally constrains efforts to understand the connection between myocilin structure, function, and disease. To address this concern, we used protein engineering methods to develop new recombinant antibodies that detect the N-terminal leucine zipper structural domain of myocilin and that are cross-reactive for human and mouse myocilin. After harvesting spleens from immunized mice and in vitro library panning, we identified two antibodies, 2A4 and 1G12. 2A4 specifically recognizes a folded epitope while 1G12 recognizes a range of conformations. We matured antibody 2A4 for improved biophysical properties, resulting in variant 2H2. In a human IgG1 format, 2A4, 1G12, and 2H2 immunoprecipitate full-length folded myocilin present in the spent media of human trabecular meshwork (TM) cells, and 2H2 can visualize myocilin in fixed human TM cells using fluorescence microscopy. These new antibodies should find broad application in glaucoma and other research across multiple species platforms.  相似文献   

13.
Antibodies provide immune protection by recognizing antigens of diverse chemical properties, but elucidating the amino acid sequence-function relationships underlying the specificity and affinity of antibody-antigen interactions remains challenging. We designed and constructed phage-displayed synthetic antibody libraries with enriched protein antigen-recognition propensities calculated with machine learning predictors, which indicated that the designed single-chain variable fragment variants were encoded with enhanced distributions of complementarity-determining region (CDR) hot spot residues with high protein antigen recognition propensities in comparison with those in the human antibody germline sequences. Antibodies derived directly from the synthetic antibody libraries, without affinity maturation cycles comparable to those in in vivo immune systems, bound to the corresponding protein antigen through diverse conformational or linear epitopes with specificity and affinity comparable to those of the affinity-matured antibodies from in vivo immune systems. The results indicated that more densely populated CDR hot spot residues were sustainable by the antibody structural frameworks and could be accompanied by enhanced functionalities in recognizing protein antigens. Our study results suggest that synthetic antibody libraries, which are not limited by the sequences found in antibodies in nature, could be designed with the guidance of the computational machine learning algorithms that are programmed to predict interaction propensities to molecules of diverse chemical properties, leading to antibodies with optimal characteristics pertinent to their medical applications.  相似文献   

14.
Granulocyte-colony stimulating factor (G-CSF) is used worldwide to prevent neutropenia caused by high-dose chemotherapy. It has limited stability, strict formulation and storage requirements, and because of poor oral absorption must be administered by injection (typically daily). Thus, there is significant interest in developing analogs with improved pharmacological properties. We used our ultrahigh throughput computational screening method to improve the physicochemical characteristics of G-CSF. Improving these properties can make a molecule more robust, enhance its shelf life, or make it more amenable to alternate delivery systems and formulations. It can also affect clinically important features such as pharmacokinetics. Residues in the buried core were selected for optimization to minimize changes to the surface, thereby maintaining the active site and limiting the designed protein's potential for antigenicity. Using a structure that was homology modeled from bovine G-CSF, core designs of 25-34 residues were completed, corresponding to 10(21)-10(28) sequences screened. The optimal sequence from each design was selected for biophysical characterization and experimental testing; each had 10-14 mutations. The designed proteins showed enhanced thermal stabilities of up to 13 degrees C, displayed five-to 10-fold improvements in shelf life, and were biologically active in cell proliferation assays and in a neutropenic mouse model. Pharmacokinetic studies in monkeys showed that subcutaneous injection of the designed analogs results in greater systemic exposure, probably attributable to improved absorption from the subcutaneous compartment. These results show that our computational method can be used to develop improved pharmaceuticals and illustrate its utility as a powerful protein design tool.  相似文献   

15.
The protein moiety of the Braun's E. coli outer membrane lipoprotein (Lpp-56) is an attractive object of biophysical investigation in several aspects. It is a homotrimeric, parallel coiled coil, a class of coiled coils whose stability and folding have been studied only occasionally. Lpp-56 possesses unique structural properties and exhibits extremely low rates of folding and unfolding. It is natural to ask how the specificity of the structure determines the extraordinary physical chemical properties of this protein. Recently, a seemingly controversial data on the stability and unfolding rate of Lpp-56 have been published (Dragan et al., Biochemistry 2004;43: 14891-14900; Bjelic et al., Biochemistry 2006;45:8931-8939). The unfolding rate constant measured using GdmCl as the denaturing agent, though extremely low, was substantially higher than that obtained on the basis of thermal unfolding. If this large difference arises from the effect of screening of electrostatic interactions induced by GdmCl, electrostatic interactions would appear to be an important factor determining the unusual properties of Lpp-56. We present here a computational analysis of the electrostatic properties of Lpp-56 combining molecular dynamics simulations and continuum pK calculations. The pH-dependence of the unfolding free energy is predicted in good agreement with the experimental data: the change in DeltaG between pH 3 and pH 7 is approximately 60 kJ mol(-1). The results suggest that the difference in the stability of the protein observed using different experimental methods is mainly because of the effect of the reduction of electrostatic interactions when the salt (GdmCl) concentration increases. We also find that the occupancy of the interhelical salt bridges is unusually high. We hypothesize that electrostatic interactions, and the interhelical salt bridges in particular, are an important factor determining the low unfolding rate of Lpp-56.  相似文献   

16.
Antibody-drug conjugates (ADCs), produced through the chemical linkage of a potent small molecule cytotoxin (drug) to a monoclonal antibody, have more complex and heterogeneous structures than the corresponding antibodies. This review describes the analytical methods that have been used in their physicochemical characterization. The selection of the most appropriate methods for a specific ADC is heavily dependent on the properties of the linker, the drug and the choice of attachment sites (lysines, inter-chain cysteines, Fc glycans). Improvements in analytical techniques such as protein mass spectrometry and capillary electrophoresis have significantly increased the quality of information that can be obtained for use in product and process characterization and for routine lot release and stability testing.Key words: antibody drug conjugates, physicochemical characterization, analytical methods, auristatins, maytansines, biophysical characterization, drug distribution, drug loading, drug to antibody ratio  相似文献   

17.
Highly specific interaction with foreign molecules is a unique feature of antibodies. Since 1975, when Keller and Milstein proposed the method of hybridoma technology and prepared mouse monoclonal antibodies, many antibodies specific to various antigens have been obtained. Recent development of methods for preparation of recombinant DNA libraries and in silico bioinformatics approaches for protein structure analysis makes possible antibody preparation using gene engineering approaches. The development of gene engineering methods allowed creating recombinant antibodies and improving characteristics of existing antibodies; this significantly extends the applicability of antibodies. By modifying biochemical and immunochemical properties of antibodies by changing their amino acid sequences it is possible to create antibodies with properties optimal for certain tasks. For example, application of recombinant technologies resulted in antibody preparation of high affinity significantly exceeding the initial affinity of natural antibodies. In this review we summarize information about the structure, modes of preparation, and application of recombinant antibodies and their fragments and also consider the main approaches used to increase antibody affinity.  相似文献   

18.
Recently Bekker et al. [Bekker G‐J et al. Protein Sci. 2019;28:429–438.] described a computational strategy of applying molecular‐dynamics simulations to estimate the relative stabilities of single‐domain antibodies, and utilized their method to design changes with the aim of increasing the stability of a single‐domain antibody with a known crystal structure. The structure from which they generated potentially stabilizing mutations is an anti‐cholera toxin single domain antibody selected from a naïve library which has relatively low thermal stability, reflected by a melting point of 48°C. Their work was purely theoretical, so to examine their predictions, we prepared the parental and predicted stabilizing mutant single domain antibodies and examined their thermal stability, ability to refold and affinity. We found that the mutation that improved stability the most (~7°C) was one which changed an amino acid in CDR1 from an asparagine to an aspartic acid. This change unfortunately was also accompanied by a reduction in affinity. Thus, while their modeling did appear to successfully predict stabilizing mutations, introducing mutations in the binding regions is problematic. Of further interest, the mutations selected via their high temperature simulations, did improve refolding, suggesting that they were successful in stabilizing the structure at high temperatures and thereby decrease aggregation. Our result should permit them to reassess and refine their model and may one day lead to a usefulin silico approach to protein stabilization.  相似文献   

19.
Antibodies derived from non-human sources must be modified for therapeutic use so as to mitigate undesirable immune responses. While complementarity-determining region (CDR) grafting-based humanization techniques have been successfully applied in many cases, it remains challenging to maintain the desired stability and antigen binding affinity upon grafting. We developed an alternative humanization approach called CoDAH (“Computationally-Driven Antibody Humanization”) in which computational protein design methods directly select sets of amino acids to incorporate from human germline sequences to increase humanness while maintaining structural stability. Retrospective studies show that CoDAH is able to identify variants deemed beneficial according to both humanness and structural stability criteria, even for targets lacking crystal structures. Prospective application to TZ47, a murine anti-human B7H6 antibody, demonstrates the approach. Four diverse humanized variants were designed, and all possible unique VH/VL combinations were produced as full-length IgG1 antibodies. Soluble and cell surface expressed antigen binding assays showed that 75% (6 of 8) of the computationally designed VH/VL variants were successfully expressed and competed with the murine TZ47 for binding to B7H6 antigen. Furthermore, 4 of the 6 bound with an estimated KD within an order of magnitude of the original TZ47 antibody. In contrast, a traditional CDR-grafted variant could not be expressed. These results suggest that the computational protein design approach described here can be used to efficiently generate functional humanized antibodies and provide humanized templates for further affinity maturation.  相似文献   

20.
Among the five known SARS-CoV-2 variants of concern, Delta is the most virulent leading to severe symptoms and increased mortality among infected people. Our study seeks to examine how the biophysical parameters of the Delta variant correlate to the clinical observations. Receptor binding domain (RBD) is the first point of contact with the human host cells and is the immunodominant form of the spike protein. Delta variant RBD contains two novel mutations L452R and T478K. We examined the effect of single as well as the double mutations on RBD expression in human Expi293 cells, RBD stability using urea and thermal denaturation, and RBD binding to angiotensin converting enzyme 2 (ACE2) receptor and to neutralizing antibodies using isothermal titration calorimetry. Delta variant RBD showed significantly higher expression compared to the wild-type RBD, and the increased expression is due to L452R mutation. Despite their non-conservative nature, none of the mutations significantly affected RBD structure and stability. All mutants showed similar binding affinity to ACE2 and to Class 1 antibodies (CC12.1 and LY-CoV016) as that of the wild-type. Delta double mutant L452R/T478K showed no binding to Class 2 antibodies (P2B-2F6 and LY-CoV555) and a hundred-fold weaker binding to a Class 3 antibody (REGN10987), and the decreased antibody binding is determined by the L452R mutation. These results indicate that the immune escape from neutralizing antibodies, rather than increased receptor binding, is the main biophysical parameter that determined the fitness landscape of the Delta variant RBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号