首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《MABS-AUSTIN》2013,5(8):1391-1401
ABSTRACT

In the biopharmaceutical environment, controlling the Critical Quality Attributes (CQA) of a product is essential to prevent changes that affect its safety or efficacy. Physico-chemical techniques and bioassays are used to screen and monitor these CQAs. The higher order structure (HOS) is a CQA that is typically studied using techniques that are not commonly considered amenable to quality control laboratories. Here, we propose a peptide mapping-based method, named native peptide mapping, which could be considered as straightforward for HOS analysis and applicable for IgG4 and IgG1 antibodies. The method was demonstrated to be fit-for-purpose as a stability-indicating assay by showing differences at the peptide level between stressed and unstressed material. The unfolding pathway induced by a heat stress was also studied via native peptide mapping assay. Furthermore, we demonstrated the structure–activity relationship between HOS and biological activity by analyzing different types of stressed samples with a cell-based assay and the native peptide mapping. The correlation between both sets of results was highlighted by monitoring peptides located in the complementary-determining regions and the relative potency of the biotherapeutic product. This relationship represents a useful approach to interrogate the criticality of HOS as a CQA of a drug.  相似文献   

2.
Oxidation of methionine residues in biopharmaceuticals is a common and often unwanted modification that frequently occurs during their manufacture and storage. It often results in a lack of stability and biological function of the product, necessitating continuous testing for the modification throughout the product shelf life. A major class of biopharmaceutical products are monoclonal antibodies (mAbs), however, techniques for their detailed structural analysis have until recently been limited. Hydrogen/deuterium exchange mass spectrometry (HXMS) has recently been successfully applied to the analysis of mAbs. Here we used HXMS to identify and localise the structural changes that occurred in a mAb (IgG1) after accelerated oxidative stress. Structural alterations in a number of segments of the Fc region were observed and these related to oxidation of methionine residues. These included a large change in the hydrogen exchange profile of residues 247–253 of the heavy chain, while smaller changes in hydrogen exchange profile were identified for peptides that contained residues in the interface of the CH2 and CH3 domains.  相似文献   

3.
Chromatin modification is a key mechanism of gene expression in eukaryotes, and involve interactions among several proteins. Recently, we reported that HOS15, a cullin-based E3 ligase receptor, is involved in chromatin remodeling, and regulates gene expression and cold tolerance in Arabidopsis thaliana. To identify the protein complexes that function in conjunction with HOS15, we performed FLAGtag affinity purification using transgenic Arabidopsis plants expressing HOS15-FLAG, and isolated HOS15-interacting proteins. To identify these proteins, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) analysis was conducted, and 16 proteins were identified. Database searches revealed that these proteins were histone variants, histone deacetylases, mRNA splicing regulators, a protein kinase, and proteins of unknown function. The ability of these proteins binding to HOS15 was confirmed using yeast two-hybrid, co-immunoprecipitation (Co-IP), and luciferase complementation imaging (LCI) assays. Our data suggest that specific interactions between HOS15 and those proteins involve in chromatin remodeling and RNA processing regulates plant development and abiotic stress in Arabidopsis.  相似文献   

4.
Oligomeric proteins generally undergo unfolding through a dissociation/denaturation mechanism wherein the subunits first dissociate and then unfold. This mechanism can be detected by the fact that the proteins exhibit a concentration dependence of the denaturation curve. However, the concentration dependence does not answer the question of whether there are thermally induced conformational changes that facilitate subunit dissociation. To fully probe these mechanisms it is desirable to have an analytical approach that is capable of measuring both subunit dissociation and protein denaturation in a highly sensitive manner. In this article, we demonstrate that the combined use of native mass spectrometry to detect subunit mixing, and amide hydrogen/deuterium exchange to detect transient unfolding events can provide a very unique insight into the pre‐melting transitions in a protein oligomer. Both methods keep an isotopic record of each transformation event, without the dependence on equilibrium of the unfolding reaction. Here, we use a combined form of H/D exchange/mass spectrometry and isotopic labeling/native electrospray mass spectrometry to study the pre‐unfolding events of Bacillus subtilis NAD+ synthetase, a symmetrical dimer protein, which plays a vital role in the lifecycle of the bacteria. In the experimental outcome provided, we were able to clearly illustrate that at elevated temperatures, the NAD synthetase dimer undergoes reversible dissociation without monomer unfolding, while at temperatures where monomer unfolding is observed to take place, the rate of dimer dissociation still yet exceeds the rate of unfolding. Information provided by combining these two mass spectrometric methods was found to be very robust, and allowed us to establish an NAD synthetase unfolding model, where primary dissociation occurs prior to the complete unfolding of the NAD+ synthetase.  相似文献   

5.
Host cell proteins (HCPs) are process-related impurities derived from host organisms, which need to be controlled to ensure adequate product quality and safety. In this study, product quality attributes were tracked for several monoclonal antibodies (mAbs) under the intended storage and accelerated stability conditions. One product quality attribute not expected to be stability indicating is the N-glycan heterogeneity profile. However, significant N-glycan degradation was observed for one mAb under accelerated and stressed stability conditions. The root cause for this instability was attributed to hexosaminidase B (HEXB), an enzyme known to remove terminal N-acetylglucosamine (GlcNAc). HEXB was identified by liquid chromatography–mass spectrometry (LC–MS)-based proteomics approach to be enriched in the impacted stability batches from mAb-1. Subsequently, enzymatic and targeted multiple reaction monitoring (MRM) MS assays were developed to support process and product characterization. A potential interaction between HEXB and mAb-1 was initially observed from the analysis of process intermediates by proteomics among several mAbs and later supported by computational modeling. An improved bioprocess was developed to significantly reduce HEXB levels in the final drug substance. A risk assessment was conducted by evaluating the in silico immunogenicity risk and the impact on product quality. To the best of our knowledge, HEXB is the first residual HCP reported to have impact on the glycan profile of a formulated drug product. The combination of different analytical tools, mass spectrometry, and computational modeling provides a general strategy on how to study residual HCP for biotherapeutics development.  相似文献   

6.
Lima AB  Macedo LT  Sasse AD 《PloS one》2011,6(8):e22681
IntroductionRecently, studies have demonstrated that the addition of bevacizumab to chemotherapy could be associated with better outcomes in patients with advanced non-small cell lung cancer (NSCLC). However, the benefit seems to be dependent on the drugs used in the chemotherapy regimens. This systematic review evaluated the strength of data on efficacy of the addition of bevacizumab to chemotherapy in advanced NSCLC.MethodsPubMed, EMBASE, and Cochrane databases were searched. Eligible studies were randomized clinical trials (RCTs) that evaluated chemotherapy with or without bevacizumab in patients with advanced NSCLC. The outcomes included overall survival (OS), progression-free survival (PFS), response rate (RR), toxicities and treatment related mortality. Hazard ratios (HR) and odds ratios (OR) were used for the meta-analysis and were expressed with 95% confidence intervals (CI).ResultsWe included results reported from five RCTs, with a total of 2,252 patients included in the primary analysis, all of them using platinum-based chemotherapy regimens. Compared to chemotherapy alone, the addition of bevacizumab to chemotherapy resulted in a significant longer OS (HR 0.89; 95% CI 0.79 to 0.99; p = 0.04), longer PFS (HR 0.73; 95% CI 0.66 to 0.82; p<0.00001) and higher response rates (OR 2.34; 95% CI 1.89 to 2.89; p<0.00001). We found no heterogeneity between trials, in all comparisons. There was a slight increase in toxicities in bevacizumab group, as well as an increased rate of treatment-related mortality.ConclusionsThe addition of bevacizumab to chemotherapy in patients with advanced NSCLC prolongs OS, PFS and RR. Considering the toxicities added, and the small absolute benefits found, bevacizumab plus platinum-based chemotherapy can be considered an option in selected patients with advanced NSCLC. However, risks and benefits should be discussed with patients before decision making.  相似文献   

7.
BackgroundKnowledge of trace element stability during sample handling and preservation is a prerequisite to produce reliable test results in clinical trace element analysis.MethodAn alkaline dissolution method has been developed using inductively coupled plasma mass spectrometry to quantify eighteen trace element concentrations: vanadium, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, selenium, bromine, molybdenum, cadmium, antimony, iodine, mercury, thallium, lead, and bismuth in human blood, using a small sample volume of 0.1 mL. The study evaluated the comparative effects of storage conditions on the stability of nutritionally essential and non-essential elements in human blood and plasma samples stored at three different temperatures (4 °C, −20 °C and −80 °C) over a one-year period, and analysed at multiple time points. The distribution of these elements between whole blood and plasma and their distribution relationships are illustrated using blood samples from 66 adult donors in Queensland.ResultsThe refrigeration and freezing of blood and plasma specimens proved to be suitable storage conditions for many of the trace elements for periods up to six months, with essentially unchanged concentrations. Substantially consistent recoveries were obtained by preserving specimens at −20 °C for up to one year. Ultra-freezing of the specimens at −80 °C did not improve stability; but appeared to result in adsorption and/or precipitation of some elements, accompanied by a longer sample thawing time. A population sample study revealed significant differences between the blood and plasma concentrations of six essential elements and their relationships also varied significantly for different elements.ConclusionBlood and plasma specimens can be reliably stored at 4 °C for six months or kept frozen at −20 °C up to one year to obtain high quality test results of trace elements.  相似文献   

8.
BackgroundPressure perturbation calorimetry (PPC) is a biophysical method that allows direct determination of the volume changes upon conformational transitions in macromolecules.Scope of this reviewThis review provides novel details of the use of PPC to analyze unfolding transitions in proteins. The emphasis is made on the data analysis as well as on the validation of different structural factors that define the volume changes upon unfolding. Four case studies are presented that show the application of these concepts to various protein systems.Major conclusionsThe major conclusions are:
  • 1.Knowledge of the thermodynamic parameters for heat induced unfolding facilitates the analysis of the PPC profiles.
  • 2.The changes in the thermal expansion coefficient upon unfolding appear to be temperature dependent.
  • 3.Substitutions on the protein surface have negligible effects on the volume changes upon protein unfolding.
  • 4.Structural plasticity of proteins defines the position dependent effect of amino acid substitutions of the residues buried in the native state.
  • 5.Small proteins have positive volume changes upon unfolding which suggests difference in balance between the cavity/void volume in the native state and the hydration volume changes upon unfolding as compared to the large proteins that have negative volume changes.
General significanceThe information provided here gives a better understanding and deeper insight into the role played by various factors in defining the volume changes upon protein unfolding. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

9.
Introduction: Mass spectrometry (MS) is widely used in the characterization of biomolecules including peptide and protein therapeutics. These biotechnology products have seen rapid growth over the past few decades and continue to dominate the global pharmaceutical market. Advances in MS instrumentation and techniques have enhanced protein characterization capabilities and supported an increased development of biopharmaceutical products.

Areas covered: This review describes recent developments in MS-based biotherapeutic analysis including sequence determination, post-translational modifications (PTMs) and higher order structure (HOS) analysis along with improvements in ionization and dissociation methods. An outlook of emerging applications of MS in the lifecycle of product development such as comparability, biosimilarity and quality control practices is also presented.

Expert commentary: MS-based methods have established their utility in the analysis of new biotechnology products and their lifecycle appropriate implementation. In the future, MS will likely continue to grow as one of the leading protein identification and characterization techniques in the biopharmaceutical industry landscape.  相似文献   


10.
《MABS-AUSTIN》2013,5(8):1200-1213
ABSTRACT

Human antibodies of the IgG2 subclass exhibit complex inter-chain disulfide bonding patterns that result in three structures, namely A, A/B, and B. In therapeutic applications, the distribution of disulfide isoforms is a critical product quality attribute because each configuration affects higher order structure, stability, isoelectric point, and antigen binding. The current standard for quantification of IgG2 disulfide isoform distribution is based on chromatographic or electrophoretic techniques that require additional characterization using mass spectrometry (MS)-based methods to confirm disulfide linkages. Detailed characterization of the IgG2 disulfide linkages often involve MS/MS approaches that include electrospray ionization or electron-transfer dissociation, and method optimization is often cumbersome due to the large size and heterogeneity of the disulfide-bonded peptides. As reported here, we developed a rapid LC-MALDI-TOF/TOF workflow that can both identify the IgG2 disulfide linkages and provide a semi-quantitative assessment of the distribution of the disulfide isoforms. We established signature disulfide-bonded IgG2 hinge peptides that correspond to the A, A/B, and B disulfide isoforms and can be applied to the fast classification of IgG2 isoforms in heterogeneous mixtures.  相似文献   

11.
Improved insulin stability through amino acid substitution.   总被引:4,自引:0,他引:4  
Insulin analogs designed to decrease self-association and increase absorption rates from subcutaneous tissue were found to have altered stability. Replacement of HB10 with aspartic acid increased stability while substitutions at B28 and/or B29 were either comparable to insulin or had decreased stability. The principal chemical degradation product of accelerated storage conditions was a disulfide-linked multimer that was formed through a disulfide interchange reaction which resulted from beta-elimination of the disulfides. The maintenance of the native state of insulin was shown to be important in protecting the disulfides from reduction by dithiothreitol and implicitly from the disulfide interchange reaction that occurs during storage. To understand how these amino acid changes alter chemical stability, the intramolecular conformational equilibria of each analog was assessed by equilibrium denaturation. The Gibbs free energy of unfolding was compared with the chemical stability during storage for over 20 analogs. A significant positive correlation (R2 = 0.8 and P less than 0.0005) exists between the conformational stability and chemical stability of these analogs, indicating that the chemical stability of insulin's disulfides is under the thermodynamic control of the conformational equilibria.  相似文献   

12.
BackgroundMekong schistosomiasis is a parasitic disease caused by the blood-dwelling fluke Schistosoma mekongi. This disease contributes to human morbidity and mortality in the Mekong region, posing a public health threat to people in the area. Currently, praziquantel (PZQ) is the drug of choice for the treatment of Mekong schistosomiasis. However, the molecular mechanisms of PZQ action remain unclear, and Schistosoma PZQ resistance has been reported occasionally. Through this research, we aimed to use a metabolomic approach to identify the potentially altered metabolic pathways in S. mekongi associated with PZQ treatment.Methodology/Principal findingsAdult stage S. mekongi were treated with 0, 20, 40, or 100 μg/mL PZQ in vitro. After an hour of exposure to PZQ, schistosome metabolites were extracted and studied with mass spectrometry. The metabolomic data for the treatment groups were analyzed with the XCMS online platform and compared with data for the no treatment group. After low, medium (IC50), and high doses of PZQ, we found changes in 1,007 metabolites, of which phosphatidylserine and anandamide were the major differential metabolites by multivariate and pairwise analysis. In the pathway analysis, arachidonic acid metabolism was found to be altered following PZQ treatment, indicating that this pathway may be affected by the drug and potentially considered as a novel target for anti-schistosomiasis drug development.Conclusions/SignificanceOur findings suggest that arachidonic acid metabolism is a possible target in the parasiticidal effects of PZQ against S. mekongi. Identifying potential targets of the effective drug PZQ provides an interesting viewpoint for the discovery and development of new agents that could enhance the prevention and treatment of schistosomiasis.  相似文献   

13.
Introduction: Signal transduction cascades drive cellular proliferation, apoptosis, immune, and survival pathways. Proteins have emerged as actionable drug targets because they are often dysregulated in cancer, due to underlying genetic mutations, or dysregulated signaling pathways. Cancer drug development relies on proteomic technologies to identify potential biomarkers, mechanisms-of-action, and to identify protein binding hot spots.

Areas covered: Brief summaries of proteomic technologies for drug discovery include mass spectrometry, reverse phase protein arrays, chemoproteomics, and fragment based screening. Protein-protein interface mapping is presented as a promising method for peptide therapeutic development. The topic of biosimilar therapeutics is presented as an opportunity to apply proteomic technologies to this new class of cancer drug.

Expert opinion: Proteomic technologies are indispensable for drug discovery. A suite of technologies including mass spectrometry, reverse phase protein arrays, and protein-protein interaction mapping provide complimentary information for drug development. These assays have matured into well controlled, robust technologies. Recent regulatory approval of biosimilar therapeutics provides another opportunity to decipher the molecular nuances of their unique mechanisms of action. The ability to identify previously hidden protein hot spots is expanding the gamut of potential drug targets. Proteomic profiling permits lead compound evaluation beyond the one drug, one target paradigm.  相似文献   


14.
With the rapid growth of biopharmaceutical product development, knowledge of therapeutic protein stability has become increasingly important. We evaluated assays that measure solution-mediated interactions and key molecular characteristics of 9 formulated monoclonal antibody (mAb) therapeutics, to predict their stability behavior. Colloidal interactions, self-association propensity and conformational stability were measured using effective surface charge via zeta potential, diffusion interaction parameter (kD) and differential scanning calorimetry (DSC), respectively. The molecular features of all 9 mAbs were compared to their stability at accelerated (25°C and 40°C) and long-term storage conditions (2–8°C) as measured by size exclusion chromatography. At accelerated storage conditions, the majority of the mAbs in this study degraded via fragmentation rather than aggregation. Our results show that colloidal stability, self-association propensity and conformational characteristics (exposed tryptophan) provide reasonable prediction of accelerated stability, with limited predictive value at 2–8°C stability. While no correlations to stability behavior were observed with onset-of-melting temperatures or domain unfolding temperatures, by DSC, melting of the Fab domain with the CH2 domain suggests lower stability at stressed conditions. The relevance of identifying appropriate biophysical assays based on the primary degradation pathways is discussed.  相似文献   

15.
We tested the hypothesis that usual exercise oxidative stress strongly affects erythrocytes viability. A 120-min physical exercise with progressive intensity was used as a model of oxidative stress. FT-IR spectrometry was used to determine structural changes in erythrocyte contents (phospholipids, proteins, lactate, and glucose) from blood samples taken every 20 min. Carbonyl formation from amino acid residues (P = 0.03) and hemoglobin unfolding (P = 0.01) could be identified as main protein denaturation markers during oxidative stress. Higher unsaturation level (P = 0.001) in phospholipids fatty acyl chains were also observed while VO(2) increased (P < 0.05). The increase in lactacidosis affected primarily hemoglobin unfolding (P = 0.02). Finally, two distinct cellular events occurred during oxidative stress: 1 - phospholipids peroxidation correlated to VO(2), but lactacidosis and hemoconcentration remained secondary factors; 2 - hemoglobin denaturation was mainly observed through unfolding and carbonylation, and lactacidosis and hemoconcentration were important contributing factors.  相似文献   

16.
Unfolding and refolding of rabbit muscle triosephosphate isomerase (TIM), a model for (betaalpha)8-barrel proteins, has been studied by amide hydrogen exchange/mass spectrometry. Unfolding was studied by destabilizing the protein in guanidine hydrochloride (GdHCl) or urea, pulse-labeling with 2H2O and analyzing the intact protein by HPLC electrospray ionization mass spectrometry. Bimodal isotope patterns were found in the mass spectra of the labeled protein, indicating two-state unfolding behavior. Refolding experiments were performed by diluting solutions of TIM unfolded in GdHCl or urea and pulse-labeling with 2H2O at different times. Mass spectra of the intact protein labeled after one to two minutes had three envelopes of isotope peaks, indicating population of an intermediate. Kinetic modeling indicates that the stability of the folding intermediate in water is only 1.5 kcal/mol. Failure to detect the intermediate in the unfolding experiments was attributed to its low stability and the high concentrations of denaturant required for unfolding experiments. The folding status of each segment of the polypeptide backbone was determined from the deuterium levels found in peptic fragments of the labeled protein. Analysis of these spectra showed that the C-terminal half folds to form the intermediate, which then forms native TIM with folding of the N-terminal half. These results show that TIM folding fits the (4+4) model for folding of (betaalpha)8-barrel proteins. Results of a double-jump experiment indicate that proline isomerization does not contribute to the rate-limiting step in the folding of TIM.  相似文献   

17.
Monoclonal antibodies are among the fastest growing therapeutics in the pharmaceutical industry. Detecting higher-order structure changes of antibodies upon storage or mishandling, however, is a challenging problem. In this study, we describe the use of diethylpyrocarbonate (DEPC)-based covalent labeling (CL) – mass spectrometry (MS) to detect conformational changes caused by heat stress, using rituximab as a model system. The structural resolution obtained from DEPC CL-MS is high enough to probe subtle conformation changes that are not detectable by common biophysical techniques. Results demonstrate that DEPC CL-MS can detect and identify sites of conformational changes at the temperatures below the antibody melting temperature (e.g., 55 ?C). The observed labeling changes at lower temperatures are validated by activity assays that indicate changes in the Fab region. At higher temperatures (e.g., 65 ?C), conformational changes and aggregation sites are identified from changes in CL levels, and these results are confirmed by complementary biophysical and activity measurements. Given the sensitivity and simplicity of DEPC CL-MS, this method should be amenable to the structural investigations of other antibody therapeutics.  相似文献   

18.
Yeast alcohol dehydrogenase preparations were prepared with the conformational zinc ion removed (Apo-I YADH) and with both the conformational and catalytic zinc ions removed (Apo-II YADH). The unfolding of Apo-I YADH and Apo-II YADH during denaturation in urea solutions was then followed by fluorescence emission, circular dichroism, and second-derivative optical spectroscopies. Compared with the native enzyme, Apo-I YADH incurred some slight unfolding, and its stability against urea was markedly decreased, while Apo-II YADH incurred marked unfolding but contained residual ordered structure even at high urea concentrations. The results show that native YADH is more conformationally stable against urea denaturation than Apo-I YADH, indicating that the conformational Zn2+ plays an important role in stabilizing the conformation of the YADH molecule. However, unfolding of the region around the conformational zinc ion is shown not to be the rate limited step in the unfolding of the molecule by the fact that the unfolding and inactivation rate constants of native and Apo-I YADH are the same. It is suggested that the catalytic zinc ion is more important in maintaining the structure of YADH. YADH lost its cooperative unfolding ability after the zinc ions were removed. The shape of the transition curves of Apo-I YADH suggests the existence of an unfolding intermediate. For both native and Apo-I YADH, inactivation occurs at much lower urea concentrations than that needed to produce significant conformational changes of the enzyme molecule. At urea concentration above 4 M, the inactivation rate constants are much higher than those of the fast phase of the reaction of unfolding. These results support the suggestion of flexibility at the active site of the enzyme (C. L. Tsou (1986) Trends Biochem. Sci., 11, 427-429; (1993) Science, 262, 308-381).  相似文献   

19.
20.
BackgroundThis study observes changes in levels of seminal nitric oxide (NO), nitric oxide synthase (NOS), macrophage migration inhibitory factor (MIF), sperm DNA integrity, chromatin condensation and Caspase-3in adult healthy men after scrotal heat stress (SHS).MethodsExposure of the scrotum of 25 healthy male volunteers locally at 40–43°C SHS belt warming 40 min each day for successive 2 d per week. The course of SHS was continuously 3 months. Routine semen analysis, hypo-osmotic swelling (HOS) test, Aniline blue (AB) staining, HOS/AB and terminal deoxynucleotidyl transferase-mediated d UDP nick-end labeling (TUNEL) were carried out before, during and after SHS. Seminal NO and NOS contents were determined by nitrate reduction method. The activated Caspase-3 levels of spermatozoa and MIF in seminal plasma were measured by the enzyme-linked immunosorbent assay (ELISA) method. Statistical significance between mean values was determined using statistical ANOVA tests.ResultsThe mean parameters of sperm concentration, motile and progressive motile sperm and normal morphological sperm were significantly decreased in groups during SHS 1, 2 and 3 months compared with those in groups of pre-SHS (P<0.001). Statistically significant differences of sperm DNA fragmentation, normal sperm membrane, and Caspase-3 activity as well as the level of NO, NOS and MIF in semen were observed between the groups before SHS and after SHS 3 months and the groups during SHS 1, 2 and 3 months (P<0.001). After three months of the SHS, various parameters recovered to the level before SHS. WBC in semen showed a positively significant correlation with the levels of NO, NOS, MIF and Caspase-3 activity. The percentage of abnormal sperm by using the test of HOS showed a positively significant correlation with that of HOS/AB.ConclusionsThe continuously constant SHS can impact the semen quality and sperm DNA and chromatin, which may be contributed to the high level of NO, NOS, MIF and Caspase-3 by SHS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号