首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen uptake of Leishmania donovani culture promastigotes was stimulated by L-proline and to a lesser extent by L-glutamate and L-arginine. L-proline reversed partially KCN-induced inhibition of respiration and completely, inhibition caused by malonate. Labeled proline, glutamate, alanine, and arginine were detected by thin layer chromatography in the free amino acid pool from cells incubated with L-proline-14C. Labeled tricarboxylic acid cycle intermediates, α-ketoglutarate, succinate, fumarate, malate, and oxaloacetate, also were found by this method in extracts from organisms incubated with L-proline-14C which contained also pyruvate. Cells incubated with malic acid-14C contained labeled alanine, glutamate, and arginine. Labeled L-proline was not found in promastigotes incubated with D-glucose-14C, although arginine, glutamate, and alanine were detected in extracts from these organisms. Indirect evidence for the presence of a NADP-dependent malic enzyme was obtained by Ochoa's method. All results suggest the presence of a proline-glutamate interconversion pathway in L. donovani promastigote culture forms.  相似文献   

2.
A sterile glucose-mineral salts broth was fortified with equimolar concentrations (10-3 M) of various organic acids and intermediates in the tricarboxylic acid cycle. Appropriate media were neutralized with 2 N NaOH, inoculated with spore suspensions or mycelial pellets ofPenicillium rubrum and incubated quiescently for 14 days or with shaking for 5 days. Rubratoxins were recovered from culture filtrates by ether extraction and resolved by thin-layer chromatography. Toxin formation in quiescent cultures was enhanced by malonate but was not markedly affected by ethyl malonate, shikimate, and acetate or by isocitrate or oxaloacetate added in the presence of malonate. Citrate, cis-aconitate, -ketoglutarate, succinate, fumarate, and malonate when present in the medium alone or in conjunction with malonate caused a 15 to 50% reduction in rubratoxin formation. Acetyl-CoA (10-5 M/flask) caused an 80% increase in toxin yield. Rubratoxin formation in shake cultures was not affected by succinate and malonate. All other combinations of intermediates and malonate caused a 10 to 50% reduction in toxin formation. At 10–3 M, citrate enhanced rubratoxin B formation and stimulated rubratoxin A production by as much as 100%. Above 10–3 M, citrate inhibited toxin production. Incorporation of [2-14C]acetate into rubratoxin was enhanced by malonate, fumarate, and malonate. A combination of pyruvate and malonate produced a 40% increase in [2-14C]acetate incorporation into rubratoxin. The highest reduction of labeled acetate incorporation (36%) was caused by succinate or -ketoglutarate combined with malonate.  相似文献   

3.
Encystment induction of Colpoda cucullus is promoted by an increase in external Ca2+ and overpopulation of Colpoda vegetative cells. Using phos-tag detection assays, the present study revealed that the in vivo phosphorylation level in several proteins [33 kDa, 37 kDa, 37.5 kDa, 43 kDa, 47 kDa, 49 kDa, etc.] was raised when the vegetative cells were stimulated by overpopulation to encyst in a medium containing 0.1 mM Ca2+ or without the addition of Ca2+. Both overpopulation-mediated encystment induction and protein phosphorylation were suppressed by the addition of EGTA. Ca2+/overpopulation-stimulated encystment induction and protein phosphorylation were also suppressed by the addition of BAPTA-AM. These results suggest that the Ca2+ inflow promoted by cell-to-cell stimulation due to overpopulation may activate signaling pathways involving protein phosphorylation and encystment induction. In the presence of cAMP-AM, the phosphorylation levels of 33 kDa, 37 kDa, 37.5 kDa, 43 kDa, 47 kDa and 49 kDa proteins were enhanced, and encystment induction was promoted. Enzyme immunoassays (EIAs) showed that intracellular cAMP concentration was raised prior to encystment when the cells were stimulated by overpopulation. These results suggest that cAMP/PKA-dependent protein phosphorylation, which is an event on Ca2+-triggered signaling pathways, may be involved in encystment induction.  相似文献   

4.
The TCA cycle was examined during Ca2+-induced conidiation in Penicillium notatum over the 12-h period after addition of Ca2+ to vegetative cultures. Conidiation was independent of Ca2+ when certain intermediates and derivatives of the TCA cycle served as sole carbon sources. Arsenite and malonate augmented the effect of Ca2+ on conidiation but did not substitute for it. Mitochondria from vegetative cells had low rates of oxidation of TCA cycle intermediates and, with the exception of pyruvate, aconitate and glutamate, these were poorly linked to phosphorylation processes. Calcium ions affected mitochondrial function causing reduced oxidation of oxoglutarate, elimination of pyruvate oxidation and a decline in respiratory control of these substrates with increased oxidation of NADH and NADPH. Radiorespirometric studies and enzyme searches revealed a complete but weakly oxidative TCA cycle in vegetative cells. In Ca2+-induced cells oxoglutarate dehydrogenase activity was deleted within 6.5 h of Ca2+ addition and this was accompanied by establishment of an incomplete Krebs cycle. Calcium-induced conidiation was associated with increased capacity for acetate and glutamate metabolism involving an activated glyoxylate shunt which may be related to enhanced biosynthetic demand. The metabolic basis of the Ca2+ effect on conidiation is discussed in connection with previous findings.  相似文献   

5.
Spores from four Frankia strains were isolated and purified to homogeneity. The purified spores were biochemically and physiologically characterized and compared to vegetative cells. Frankia spores exhibited low levels of endogenous respiration that were at least ten-fold lower than the endogenous respiration rate of vegetative cells. The macromolecular content of purified spores and vegetative cells differed. One striking difference among the Frankia spores was their total DNA content. From DAPI staining experiments, only 9% of strain ACN1AG spore population contained DNA. With strains DC12 and EuI1c, 92% and 67% of their spore population contained DNA. The efficiency of spore germination was correlated to the percentage of the spore population containing DNA. These results suggest that the majority of strain ACN1AG spores were immature or nonviable. The presence of a solidifying agent inhibited the initial stages of spore germination, but had no effect once the process had been initiated. The optimal incubation temperature for spore germination was 25°C and 30°C for strains DC12 and EuI1c, respectively. A mild heat shock increased the efficiency of spore germination, while root extracts also stimulated spore germination. These results suggest that strains DC12 and EuI1c may be suitable strains for further germination and genetic studies.  相似文献   

6.
Anaerobic decarboxylation of malonate to acetate was studied withSporomusa malonica, Klebsiella oxytoca, andRhodobacter capsulatus. WhereasS. malonica could grow with malonate as sole substrate (Y=2.0 g·mol–1), malonate decarboxylation byK. oxytoca was coupled with anaerobic growth only in the presence of a cosubstrate, e.g. sucrose or yeast extract (Y s =1.1–1.8 g·mol malonate–1).R. capsulatus used malonate anaerobically only in the light, and growth yields with acetate and malonate were identical. Malonate decarboxylation in cell-free extracts of all three bacteria was stimulated by catalytic amounts of malonyl-CoA, acetyl-CoA, or Coenzyme A plus ATP, indicating that actually malonyl-CoA was the substrate of decarboxylation. Less than 5% of malonyl-CoA decarboxylase activity was found associated with the cytoplasmic membrane. Avidin (except forK. oxytoca) and hydroxylamine inhibited the enzyme completely, EDTA inhibited partially. InS. malonica andK. oxytoca, malonyl-CoA decarboxylase was active only after growth with malonate; malonyl-CoA: acetate CoA transferase was found as well. These results indicate that malonate fermentation by these bacteria proceedsvia malonyl-CoA mediated by a CoA transferase and that subsequent decarboxylation to acetyl-CoA is catalyzed, at least withS. malonica andR. capsulatus, by a biotin enzyme.Abbreviations CoASH Coenzyme A - EDTA ethylenediamine tetraacetate  相似文献   

7.
Production of astaxanthin by sequential heterotrophic-photoautotrophiccultivation of a green alga, Haematococcus pluvialis was investigated.This involved cultivating the cells heterotrophically to high cellconcentration, followed by illumination of the culture for astaxanthinaccumulation. The optimum pH and temperature for heterotrophic biomassproduction were 8 and 25 °C, respectively. There was no significantdifference in the specific growth rate of the cells when acetateconcentration was varied between 10 mM and 30 mM. However, cellgrowth was inhibited at higher acetate concentrations. A pH stat methodwas then used for fed-batch heterotrophic culture, using acetate as theorganic carbon source. A cell concentration of 7 g L-1 wasobtained. Higher cell concentration could not be obtained because the cellschanged from vegetative to cyst forms during the heterotrophic cultivation.However, by using repeated fed-batch processes, the cells could bemaintained in the vegetative form, leading to more than two times increasein cell number output rate. When the vegetative cells were transferred tophotoautotrophic phase, there was a sharp decrease in the cell number andonly very few cells encysted and accumulated astaxanthin. On the otherhand, when the shift from heterotrophic to photoautotrophic condition wasdone when most of the cells had encysted, there was still a decrease in cellnumber but astaxanthin accumulation was very high. The astaxanthinconcentration (114 mg L-1) and productivity (4.4 mg L-1d-1) obtained by this sequential heterotrophic-photoautotrophiccultivation method are very high compared to the data in the literature.  相似文献   

8.
Acetate and malonate, basic precursors in the biosynthesis of polyketides, were added to suspension cultures ofRhammus purshiana DC. It was found that the production of anthra-derivatives (i.e. 1,8-dihydroxyanthraquinones, anthrones and-or dianthrones) in these cultures was significantly stimulated by malonate, while addition of acetate had an inhibitory effect under similar conditions.  相似文献   

9.
The mechanism of the aerobic dark assimilation of acetate in the photoheterotrophically grown purple nonsulfur bacteriumRhodospirillum rubrum was studied. Both in the light and in the dark, acetate assimilation inRsp. rubrum cells, which lack the glyoxylate pathway, was accompanied by the excretion of glyoxylate into the growth medium. The assimilation of propionate was accompanied by the excretion of pyruvate. Acetate assimilation was found to be stimulated by bicarbonate, pyruvate, the C4-dicarboxylic acids of the Krebs cycle, and glyoxylate, but not by propionate. These data implied that the citramalate (CM) cycle inRsp. rubrum cells can function as an anaplerotic pathway under aerobic dark conditions. This supposition was confirmed by respiration measurements. The respiration of cells oxidizing acetate depended on the presence of CO2 in the medium. The fact that the intermediates of the CM cycle (citramalate and mesaconate) markedly inhibited acetate assimilation but had almost no effect on cell respiration indicated that citramalate and mesaconate were intermediates of the acetate assimilation pathway. The inhibition of acetate assimilation and cell respiration by itaconate was due to its inhibitory effect on propionyl-CoA carboxylase, an enzyme of the CM cycle. The addition of 5 mM itaconate to extracts ofRsp. rubrum cells inhibited the activity of this enzyme by 85%. The data obtained suggest that the CM cycle continues to function inRsp. rubrum cells that have been grown anaerobically in the light and then transferred to the dark and incubated aerobically.  相似文献   

10.
1. Pyruvate carboxylase is present in brown adipose tissue mitochondria. 2. In isolated mitochondria, pyruvate, bicarbonate and ATP, the substrates for pyruvate carboxylase, are able to replace added malate in supplying a condensing partner for acetyl-CoA formed from beta-oxidation of fatty acids. 3. In brown adipocytes, pyruvate and CO2 increase the rate of norepinephrine-stimulated respiration synergistically. 4. The norepinephrine-stimulated respiration in brown adipocytes is diminished when pyruvate transport into the mitochondria is inhibited. 5. Pyruvate carboxylation increases the intramitochondrial level of citric acid cycle intermediates, as shown by titrations of malonate inhibition of respiration. 6. Pyruvate carboxylation can continuously supply the mitochondria with citric acid cycle intermediates, as evidenced by its ability to maintain respiration when oxoglutarate conversion to glutamate is stimulated. 7. Pyruvate carboxylation is necessary for maximal oxygen consumption even when drainage of the citric acid cycle for amino acid synthesis is eliminated. 8. Pyruvate carboxylation explains observed effects of CO2 on respiration in brown adipocytes, and may also explain the increased glucose uptake by brown adipose tissue during thermogenesis in vivo.  相似文献   

11.
Glucose catabolism in Zygosaccharomyces soja was carried out. through fermentation, whereas riboflavin producing mutant obtained by cycloheximicie treatment was found to utilize oxidative mechanisms. For instance, growth of mutant was sustained in minimal medium containing TCA cycle intermediates as the sole carbon source, whereas the mother strain could not grow on such culture media. Furthermore, malonate inhibited the oxidation of succinate with resting cells of mutant. As these results support the existence of TCA cycle in mutant, various enzyme activities relating to TCA cycle were investigated by the use of cell-free extracts of both strains. Aconitase, α-ketoglutaric decarboxylase, succinic dehydrogenase, fumarase, isocitritase and glyoxylic reductase were not detected in mother strain. These data indicated that both the TCA cycle and glyoxylate cycle did not operate in mother strain. On the other hand, all enzyme activities relating to TCA cycle and glyoxylate cycle were verified in mutant. This finding indicates that both the TCA cycle and glyoxylate cycle performed a main role in carbohydrate catabolism in mutant. The evidence that alteration of the mode of glucose catabolism from fermentation in case of mother strain to respiration of mutant elicited by the action of cycloheximicie was thus explained.  相似文献   

12.
Survival of protozoa in cooling tower biocides   总被引:2,自引:0,他引:2  
Protozoa from cooling towers may serve as hosts for legionellae, but such protozoa have not been examined with respect to effects of cooling tower biocides. In this study, two ciliate species,Tetrahymena sp andColpoda sp, and two amoebae species,Vannella miroides andAcanthamoeba hatchetti, were isolated from a cooling tower and tested for survival in the presence of four cooling tower biocides. The protozoa were exposed for 24 h to a thiocarbamate compound, an isothiazolone compound, quaternary ammonium compounds (QAC), and tributyltin neodecanoate with quarternary ammonium compounds (TBT/QAC). After exposure, cells were examined for viability. The highest concentration of each biocide in which cells could survive was compared to the manufacturers' recommended maintenance dosage (MRMD) of the biocides.Tetrahymena andColpoda survived concentrations within the range of the MRMD of thiocarbamate and QAC.Vannella andAcanthamoeba survived concentrations within the MRMD of thiocarbamate, isothiazolone, and QAC.Colpoda cysts andAcanthamoebae cysts remained viable after exposure to concentrations much greater than the MRMD of thiocarbamate, isothiazolone, and QAC. None of the protozoa in any stage could survive the MRMD of TBT/QAC. These results show that protozoa indigenous to cooling towers may survive the recommended concentration of certain biocides, and this information may be important in devising procedures for eradicating hosts for legionellae.  相似文献   

13.
Methanol-utilizing yeast,Candida boidini 11 Bh, characterized by high tolerance to methanol during growth, displays even higher tolerance when the oxidation rate by intact cells is tested. Low respiration activity is found even at 22% v/v of methanol. The half-saturation constant was 17–18mM. The half-saturation constants for the two oxidation intermediates, formaldehyde and formic acid were 3.6–4.0 and 30–33mM, respectively. When applied together with standard concentration of methanol, very low concentrations of both intermediates stimulated the oxidation rate. These results are discussed in connection with the relationship between growth and oxidation, the tolerance to high concentrations of inhibitory products and the mechanism of inhibition.  相似文献   

14.
Summary The sporulation of the fungus Claviceps purpurea is connected with the change in its respiration rate which is effected by deficiency of dissolved oxygen tension. It stops the vegetative growth of the fungus and induces the formation of conidiophores with conidia production until glucose is exhausted. With exhaustion of glucose the conidiophores continue to produce conidia by transforming vegetative cell material into conidia. Therefore final conidial concentration in batch fermentation depends on these two processes which can be regulated by oxygen input.  相似文献   

15.
Oxygen consumption of intact larval salivary glands of Drosophila hydei was measured after the addition of intermediates of the citric acid cycle or amino acids to the incubation medium. The effect of these substances on respiration of glands previously submitted to anaerobiosis in vivo was compared with that of glands of control larvae. Only isocitrate and tyrosine stimulated respiration of anaerobically treated glands to a much higher extent than glands of control larvae. This stimulatory effect was abolished when RNA or protein synthesis was inhibited. It is suggested that some of the specific puffs occurring as a consequence of anaerobiosis reflect gene activity required for an increase in utilization of isocitrate and tyrosine for respiration under conditions of stress.  相似文献   

16.
The composition and metabolic activity of cysts of the marine dinoflagellate Scrippsiella trochoidea (Stein) Loeblich were examined during dormancy, quiescence, and germination. On a per cell basis, newly formed cysts contained an order of magnitude more carbohydrate but significantly less protein and chlorophyll a than did exponentially growing vegetative cells. Loss of lipid and carbohydrate from cysts during the initial dormancy period reflected a respiration rate estimated to be 10% of the respiratory activity in vegetative cells. Among older, quiescent cysts the calculated respiration rate decreased further to approximately 1.5% of the vegetative rate and appeared to proceed largely at the expense of carbohydrate reserves. These estimated rates of respiration were in good agreement with direct measurements of cyst oxygen consumption. The transfer of quiescent cysts to conditions permissive for germination resulted in a rapid increase in respiration rate, as evidenced by carbohydrate loss and O2 consumption. The increased respiratory activity was followed by an increase in protein content and, later, by an increase in chlorophyll a content and photosynthetic capacity. Just prior to germination the P/R ratio became greater than 1, and the estimated chlorophyll-specific photosynthetic activity reached 75% of the rate in vegetative cells. Complete restoration of photosynthetic and respiratory capacity apparently was not achieved until after excystment. These data confirm the common assumption that dinoflagellate cysts represent true “resting” cells, containing extensive energy reserves and displaying greatly reduced metabolic activity.  相似文献   

17.
Summary The endogenous respiration of 14C-labelled spores of B. cereus was measured through the 14CO2 produced, and the rate expressed as Q (l CO2/hxmg). New upper limits for respiration in various conditions have been set.Dry spores had no measurable activity; Q<10–4 at room temperature and <10–3 at 35° C. For wet spores of different harvests, at 30°C, Q lay between 0.0013 to 0.067. Near 40° C, respiration showed a maximum. Thermal history has a great influence on Q. CO2 production by heat-killed spores is attributed largely to infection.Water or 10–3 m sodium phosphate buffer (pH=6.5) gave equal spore respiration, in strong NaCl it was less. Azide enhanced respiration dramatically. A temporary increase was also found with non-radioactive glucose. Exogenous respiration of spores in glucose exceeded endogenous respiration.Endogenous and exogenous respiration of vegetative forms were much larger than those of spores and were time-dependent. The ratio of minimum (endogenous, dry spores) and maximum (exogenous, wet vegetative cells) respiration was at least 3x105.  相似文献   

18.
在热带和亚热带森林中,火烧是一种清理采伐迹地的有效管理措施。尽管许多研究表明,火烧刺激了土壤的碳排放,但对亚热带火强度对土壤呼吸的影响还缺乏了解。在中亚热带米槠常绿阔叶次生林采伐迹地上,设置高火烧强度(HF)、低火烧强度(LF)炼山造林处理,利用LI-8100对造林初期(2012年3月-2012年12月)土壤呼吸进行测定,同时监测观测期土壤温度、含水量以及降雨量等气象因子,分析不同火烧强度对中亚热带造林初期土壤呼吸及排放量的影响,同时探讨影响土壤呼吸变化的主要因素。结果表明:(1)观测期间不同火烧强度对土壤呼吸的影响呈现出明显的时间变化特征:与对照(CT)相比,土壤呼吸在火烧后2个月以内显著增加(P<0.05),HF和LF分别增加76.3%和55.3%;在火烧后2-5个月内三种处理间没有显著差异(P>0.05);但之后,火烧处理土壤呼吸显著低于CT (P<0.05),HF和LF分别降低40%和32.6%;在观测期间火烧处理没有导致土壤CO2累计排放量的增加。(2)火烧处理下,仅HF处理中土壤呼吸与土壤温度显著相关(P<0.05),但拟合决定系数较低。(3)单次降水事件会导致火烧处理下土壤呼吸的增加,而对照无明显增加;但连续性降水事件中,降雨早期促进土壤呼吸,而后期呈现出抑制作用。  相似文献   

19.
The endogenous respiration of six members of Saprolegniaceae (Oomycetes), Saprotegnia sp., Thraustotheca sp., Achlya sp., Dichtyuchus sp., Aphanomyces euteiches, and A. astaci were studied in the presence and in the absence of exogenous substrate using conventional manometric techniques. Glucose stimulated the rate of oxygen uptake of unstarved mycelia to some extent in all the fungi. Attempts to increase the weak stimulation of respiration by glucose in A. astaci were not successful. The respiratory quotients of the fungi tested were usually in the range of 0.7 to 0.9 during endogenous respiration, and addition of glucose increased these values more than expected. L-leucine and L-glutamic acid stimulated respiration of A. astaci only when the fugus was starved, and acetic acid and butyric acid were inhibitory. Fructose and acetic acid increased respiration in starved mycelium of A. euteiches while L-leucine and L-glutamic acid had little effect. Antimycin A, HOQNO, HCN, and fluoroacetate strongly inhibited endogenous oxygen uptake by A. astaci. Amytal and azide were also markedly inhibitory while rotenone and CO had little effect. DNP and diphenylamine inhibited respiration at a high concentration but at a lower concentration DNP was stimulatory. In contrast the respiration of Saprolegnia sp. was resistant to cyanide, antimycin A, and HOQNO. Spectrophotometric observations on homogenized mycelia of Saprolegnia sp. and of A. astaci indicated the presence of cytochrome c (551 nm), two b-type cytochromes (557 and 564 nm) and cytochrome a-a3 (605 nm) all in approximately equimolar concentrations. In both strains CO combined with cytochrome a3 and an unidentified pigment. A remarkable similarity in the cytochrome system seems to exist between these two strains and some members of the Leptomitales.  相似文献   

20.
Repression of maleate cis-trans isomerase(maleate isomerase) by carbon sources and its reversal were investigated by using Alcaligenes faecalis IB-14.

The formation of maleate isomerase was induced by malonate favorably in a poor medium, whereas it was repressed in a rich medium by carbon sources such as intermediates of TCA cycle. The repression provoked by dl-malate was accompanied with remarkable promotion of the cell growth and with accumulation of a large amount of pyruvate. The enzyme levels of TCA cycle were elevated several times in the dl-malate repressed cells. It was probable to assume that the formation of maleate isomerase was subject to catabolite repression when a rapid and surplus metabolism of dl-malate via TCA cycle was conducted.

So, as an approach to reveal the chemical nature of the catabolite moiety, reversal of the catabolite repression was studied. It was demonstrated that the repression provoked by dl-malate was reversed by various cultural conditions as follows; addition of higher concentrations of malonate, divided supply of dl-malate, “anaerobic” incubation and addition of higher concentrations of ammonium ion. From physiological significances of these events, it was revealed that catabolite repression of maleate isomerase was reversed by minimizing the functioning of TCA cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号