首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Monoclonal antibodies (mAbs) are a rapidly growing drug class for which great efforts have been made to optimize certain molecular features to achieve the desired pharmacokinetic (PK) properties. One approach is to engineer the interactions of the mAb with the neonatal Fc receptor (FcRn) by introducing specific amino acid sequence mutations, and to assess their effect on the PK profile with in vivo studies. Indeed, FcRn protects mAbs from intracellular degradation, thereby prolongs antibody circulation time in plasma and modulates its systemic clearance. To allow more efficient and focused mAb optimization, in vitro input that helps to identify and quantitatively predict the contribution of different processes driving non-target mediated mAb clearance in vivo and supporting translational PK modeling activities is essential. With this aim, we evaluated the applicability and in vivo-relevance of an in vitro cellular FcRn-mediated transcytosis assay to explain the PK behavior of 25 mAbs in rat or monkey. The assay was able to capture species-specific differences in IgG-FcRn interactions and overall correctly ranked Fc mutants according to their in vivo clearance. However, it could not explain the PK behavior of all tested IgGs, indicating that mAb disposition in vivo is a complex interplay of additional processes besides the FcRn interaction. Overall, the transcytosis assay was considered suitable to rank mAb candidates for their FcRn-mediated clearance component before extensive in vivo testing, and represents a first step toward a multi-factorial in vivo clearance prediction approach based on in vitro data.  相似文献   

2.
如何将定性捕食的数据转化为定量的数据是评价捕食性天敌功能的一大挑战。酶联免疫吸附测定(Ezyme-linked immunosorbent assay,ELISA)成功地解决了这一难题。该ELISA具有灵敏度高、成本低、操作简便、可大批量检测样品等独特的优点,即使20世纪末以来大规模应用的聚合酶链式反应(Polymerase chain reaction,PCR)及新一代测序技术应用,也并未完全取代ELISA。由于单抗具有高度特异性和均质性,同时结合了ELISA检测方法具有成本低、大批量样品快速检测等优点,在很大程度上改进了节肢动物捕食作用的研究方法。本文以利用褐飞虱Nilaparvata lugens单抗评价稻田拟环纹豹蛛Pardosa pseudoannulata对褐飞虱的控制作用为例,阐述基于单抗的ELISA检测技术用于捕食作用评价的技术路线及应用前景等。  相似文献   

3.
Pharmacokinetic (PK) testing of a humanized (κI, VH3 framework) and affinity matured anti-hepatitis C virus E2-glycoprotein (HCV-E2) antibody (hu5B3.κ1VH3.v3) in rats revealed unexpected fast clearance (34.9 mL/day/kg). This antibody binds to the rat recycling receptor FcRn as expected for a human IgG1 antibody and does not display non-specific binding to baculovirus particles in an assay that is correlated with fast clearance in cynomolgus monkey. The antigen is not expressed in rat so target-dependent clearance does not contribute to PK. Removal of the affinity maturation changes (hu5B3.κ1VH3.v1) did not restore normal clearance. The antibody was re-humanized on a κ4, VH1 framework and the non-affinity matured version (hu5B3.κ4VH1.v1) was shown to have normal clearance (8.5 mL/day/kg). Since the change in framework results in a lower pI, primarily due to more negative charge on the κ4 template, the effect of additional charge variation on antibody PK was tested by incorporating substitutions obtained through phage display affinity maturation of hu5B3.κ1VH3.v1. A variant having a pI of 8.61 gave very fast clearance (140 mL/day/kg) whereas a molecule with pI of 6.10 gave slow clearance (5.8 mL/kg/day). Both antibodies exhibited comparable binding to rat FcRn, but biodistribution experiments showed that the high pI variant was catabolized in liver and spleen. These results suggest antibody charge can have an effect on PK through alterations in antibody catabolism independent of FcRn-mediated recycling. Furthermore, introduction of affinity maturation changes into the lower pI framework yielded a candidate with PK and virus neutralization properties suitable for clinical development.  相似文献   

4.
《MABS-AUSTIN》2013,5(5):1255-1264
Pharmacokinetic (PK) testing of a humanized (κI, VH3 framework) and affinity matured anti-hepatitis C virus E2-glycoprotein (HCV-E2) antibody (hu5B3.κ1VH3.v3) in rats revealed unexpected fast clearance (34.9 mL/day/kg). This antibody binds to the rat recycling receptor FcRn as expected for a human IgG1 antibody and does not display non-specific binding to baculovirus particles in an assay that is correlated with fast clearance in cynomolgus monkey. The antigen is not expressed in rat so target-dependent clearance does not contribute to PK. Removal of the affinity maturation changes (hu5B3.κ1VH3.v1) did not restore normal clearance. The antibody was re-humanized on a κ4, VH1 framework and the non-affinity matured version (hu5B3.κ4VH1.v1) was shown to have normal clearance (8.5 mL/day/kg). Since the change in framework results in a lower pI, primarily due to more negative charge on the κ4 template, the effect of additional charge variation on antibody PK was tested by incorporating substitutions obtained through phage display affinity maturation of hu5B3.κ1VH3.v1. A variant having a pI of 8.61 gave very fast clearance (140 mL/day/kg) whereas a molecule with pI of 6.10 gave slow clearance (5.8 mL/kg/day). Both antibodies exhibited comparable binding to rat FcRn, but biodistribution experiments showed that the high pI variant was catabolized in liver and spleen. These results suggest antibody charge can have an effect on PK through alterations in antibody catabolism independent of FcRn-mediated recycling. Furthermore, introduction of affinity maturation changes into the lower pI framework yielded a candidate with PK and virus neutralization properties suitable for clinical development.  相似文献   

5.
Prior to clinical studies, the pharmacokinetics (PK) of antibody-based therapeutics are characterized in preclinical species; however, those species can elicit immunogenic responses that can lead to an inaccurate estimation of PK parameters. Immunodeficient (SCID) transgenic hFcRn and C57BL/6 mice were used to characterize the PK of three antibodies that were previously shown to be immunogenic in mice and cynomolgus monkeys. Four mouse strains, Tg32 hFcRn SCID, Tg32 hFcRn, SCID and C57BL/6, were administered adalimumab (Humira®), mAbX and mAbX-YTE at 1 mg/kg, and in SCID strains there was no incidence of immunogenicity. In non-SCID strains, drug-clearing ADAs appeared after 4–7 days, which affected the ability to accurately calculate PK parameters. Single species allometric scaling of PK data for Humira® in SCID and hFcRn SCID mice resulted in improved human PK predictions compared to C57BL/6 mice. Thus, the SCID mouse model was demonstrated to be a useful tool for assessing the preclinical PK of immunogenic therapeutics.  相似文献   

6.
A recently available immunochemiluminometric assay (ICMA) for TSH developed by Ciba Corning Corp. has been evaluated. This system (Magic Lite) uses an acridinium-ester-labelled antibody and magnetizable particle for bound-free separation. In each assay only two calibrators are carried out and used to re-scale a manufacturer-generated curve stored in the memory of the luminometer. The precision of the response (RLU) estimated by all duplicates of 14 runs was about 4% for responses >12,000 RLU (corresponding to a concentration interval 0.7–113 μlU/ml) and worsened in the lower range (up to 10% CV); the sensitivity, computed from the mean within-assay precision profile, was 0.028 μlU/ml; the between-assay precision ranged from 4.6 to 13.1 CV%. Regression analysis of ICMA results (y) against consensus values of Behring IRMA (x) on 15 QC sera assayed in an inter-laboratory survey (concentration range 1–30 μlU/ml) gave y = ?0.003 + 0.98x indicating a good agreement of the two techniques. Similar conclusions have been derived from the comparison of the ICMA results (y) in the low TSH concentration range (< 1 μlU/ml) against the IRMA Boots Celltech (x) on 80 patient samples (y = 0.04 + 1.04x).  相似文献   

7.
《MABS-AUSTIN》2013,5(5):912-921
Immunoglobulin G (IgG) has an unusually long serum half-life in comparison to proteins of a similar size. It is well-known that this phenomenon is due to IgG's ability to bind the neonatal Fc receptor (FcRn) in a pH-dependent manner. FcRn binding properties can vary among IgGs, resulting in altered in vivo half-lives, and therefore it would be beneficial to accurately predict the FcRn binding properties of therapeutic IgG monoclonal antibodies (mAbs). Here we describe the development of an in vitro model capable of predicting the in vivo half-life of human IgG. Using a high-throughput biolayer interferometry (BLI) platform, the human FcRn association rate at acidic pH and subsequent dissociation rate at physiological pH was determined for 5 human IgG1 mAbs. Comparing the combined FcRn association and dissociation rates to the Phase 1 clinical study half-lives of the mAbs resulted in a strong correlation. The correlation was also verified in vivo using mice transgenic for human FcRn. The model was used to characterize various factors that may influence FcRn-mAb binding, including mAb variable region sequence differences and constant region glycosylation patterns. Results indicated that the complementarity-determining regions of the heavy chain significantly influence the mAb's FcRn binding properties, while the absence of glycosylation does not alter mAb-FcRn binding. Development of this high-throughput FcRn binding model could potentially predict the half-life of therapeutic IgGs and aid in selection of lead candidates while also serving as a screening tool for the development of mAbs with desired pharmacokinetic properties.  相似文献   

8.
Pharmacokinetic (PK) and immunohistochemistry (IHC) assays are essential to the evaluation of the safety and efficacy of therapeutic monoclonal antibodies (mAb) during drug development. These methods require reagents with a high degree of specificity because low concentrations of therapeutic antibody need to be detected in samples containing high concentrations of endogenous human immunoglobulins. Current assay reagent generation practices are labor-intensive and time-consuming. Moreover, these practices are molecule-specific and so only support one assay for one program at a time. Here, we describe a strategy to generate a unique assay reagent, 10C4, that preferentially recognizes a panel of recombinant human mAbs over endogenous human immunoglobulins. This “panel-specific” feature enables the reagent to be used in PK and IHC assays for multiple structurally-related therapeutic mAbs. Characterization revealed that the 10C4 epitope is conformational, extensive and mainly composed of non-CDR residues. Most key contact residues were conserved among structurally-related therapeutic mAbs, but the combination of these residues exists at low prevalence in endogenous human immunoglobulins. Interestingly, an indirect contact residue on the heavy chain of the therapeutic appears to play a critical role in determining whether or not it can bind to 10C4, but has no affect on target binding. This may allow us to improve the binding of therapeutic mAbs to 10C4 for assay development in the future. Here, for the first time, we present a strategy to develop a panel-specific reagent that can expedite the development of multiple clinical assays for structurally-related therapeutic mAbs.  相似文献   

9.
10.
The increased interest in using monoclonal antibodies (mAbs) as a platform for biopharmaceuticals has led to the need for new analytical techniques that can precisely assess physicochemical properties of these large and very complex drugs for the purpose of correctly identifying quality attributes (QA). One QA, higher order structure (HOS), is unique to biopharmaceuticals and essential for establishing consistency in biopharmaceutical manufacturing, detecting process-related variations from manufacturing changes and establishing comparability between biologic products. To address this measurement challenge, two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) methods were introduced that allow for the precise atomic-level comparison of the HOS between two proteins, including mAbs. Here, an inter-laboratory comparison involving 26 industrial, government and academic laboratories worldwide was performed as a benchmark using the NISTmAb, from the National Institute of Standards and Technology (NIST), to facilitate the translation of the 2D-NMR method into routine use for biopharmaceutical product development. Two-dimensional 1H,15N and 1H,13C NMR spectra were acquired with harmonized experimental protocols on the unlabeled Fab domain and a uniformly enriched-15N, 20%-13C-enriched system suitability sample derived from the NISTmAb. Chemometric analyses from over 400 spectral maps acquired on 39 different NMR spectrometers ranging from 500 MHz to 900 MHz demonstrate spectral fingerprints that are fit-for-purpose for the assessment of HOS. The 2D-NMR method is shown to provide the measurement reliability needed to move the technique from an emerging technology to a harmonized, routine measurement that can be generally applied with great confidence to high precision assessments of the HOS of mAb-based biotherapeutics.  相似文献   

11.
Implementation of in vitro assays that correlate with in vivo human pharmacokinetics (PK) would provide desirable preclinical tools for the early selection of therapeutic monoclonal antibody (mAb) candidates with minimal non-target-related PK risk. Use of these tools minimizes the likelihood that mAbs with unfavorable PK would be advanced into costly preclinical and clinical development. In total, 42 mAbs varying in isotype and soluble versus membrane targets were tested in in vitro and in vivo studies. MAb physicochemical properties were assessed by measuring non-specific interactions (DNA- and insulin-binding ELISA), self-association (affinity-capture self-interaction nanoparticle spectroscopy) and binding to matrix-immobilized human FcRn (surface plasmon resonance and column chromatography). The range of scores obtained from each in vitro assay trended well with in vivo clearance (CL) using both human FcRn transgenic (Tg32) mouse allometrically projected human CL and observed human CL, where mAbs with high in vitro scores resulted in rapid CL in vivo. Establishing a threshold value for mAb CL in human of 0.32 mL/hr/kg enabled refinement of thresholds for each in vitro assay parameter, and using a combinatorial triage approach enabled the successful differentiation of mAbs at high risk for rapid CL (unfavorable PK) from those with low risk (favorable PK), which allowed mAbs requiring further characterization to be identified. Correlating in vitro parameters with in vivo human CL resulted in a set of in vitro tools for use in early testing that would enable selection of mAbs with the greatest likelihood of success in the clinic, allowing costly late-stage failures related to an inadequate exposure profile, toxicity or lack of efficacy to be avoided.  相似文献   

12.
Therapeutic antibodies continue to develop as an emerging drug class, with a need for preclinical tools to better predict in vivo characteristics. Transgenic mice expressing human neonatal Fc receptor (hFcRn) have potential as a preclinical pharmacokinetic (PK) model to project human PK of monoclonal antibodies (mAbs). Using a panel of 27 mAbs with a broad PK range, we sought to characterize and establish utility of this preclinical animal model and provide guidance for its application in drug development of mAbs. This set of mAbs was administered to both hemizygous and homozygous hFcRn transgenic mice (Tg32) at a single intravenous dose, and PK parameters were derived. Higher hFcRn protein tissue expression was confirmed by liquid chromatography-high resolution tandem mass spectrometry in Tg32 homozygous versus hemizygous mice. Clearance (CL) was calculated using non-compartmental analysis and correlations were assessed to historical data in wild-type mouse, non-human primate (NHP), and human. Results show that mAb CL in hFcRn Tg32 homozygous mouse correlate with human (r2 = 0.83, r = 0.91, p < 0.01) better than NHP (r2 = 0.67, r = 0.82, p < 0.01) for this dataset. Applying simple allometric scaling using an empirically derived best-fit exponent of 0.93 enabled the prediction of human CL from the Tg32 homozygous mouse within 2-fold error for 100% of mAbs tested. Implementing the Tg32 homozygous mouse model in discovery and preclinical drug development to predict human CL may result in an overall decreased usage of monkeys for PK studies, enhancement of the early selection of lead molecules, and ultimately a decrease in the time for a drug candidate to reach the clinic.  相似文献   

13.
This first-in-human study examined the safety and pharmacokinetics of ch-mAb7F9, an anti-methamphetamine monoclonal antibody, in healthy volunteers. Single, escalating doses of ch-mAb7F9 over the range of 0.2 to 20 mg/kg were administered to 42 subjects who were followed for 147 d. Safety was measured by physical examinations, adverse events, vital signs, electrocardiograms, and clinical laboratory testing. Serum ch-mAb7F9 concentration and immunogenicity analyses were performed. There were no serious adverse reactions or discontinuations from the study due to adverse events. No trends emerged in the frequency, relatedness, or severity of adverse events with increased dose or between active and placebo treated subjects. Ch-mAb7F9 displayed expected IgG pharmacokinetic parameters, including a half-life of 17–19 d in the 3 highest dose groups and volume of distribution of 5–6 L, suggesting the antibody is confined primarily to the vascular compartment. Four (12.5%) of the 32 subjects receiving ch-mAb7F9 were confirmed to have developed a human anti-chimeric antibody response by the end of the study; however, this response did not appear to be dose related. Overall, no apparent safety or tolerability concerns were identified; a maximum tolerated dose was not reached in this Phase 1 study. Ch-mAb7F9 therefore appears safe for human administration.  相似文献   

14.
《MABS-AUSTIN》2013,5(6):1649-1656
This first-in-human study examined the safety and pharmacokinetics of ch-mAb7F9, an anti-methamphetamine monoclonal antibody, in healthy volunteers. Single, escalating doses of ch-mAb7F9 over the range of 0.2 to 20 mg/kg were administered to 42 subjects who were followed for 147 d. Safety was measured by physical examinations, adverse events, vital signs, electrocardiograms, and clinical laboratory testing. Serum ch-mAb7F9 concentration and immunogenicity analyses were performed. There were no serious adverse reactions or discontinuations from the study due to adverse events. No trends emerged in the frequency, relatedness, or severity of adverse events with increased dose or between active and placebo treated subjects. Ch-mAb7F9 displayed expected IgG pharmacokinetic parameters, including a half-life of 17–19 d in the 3 highest dose groups and volume of distribution of 5–6 L, suggesting the antibody is confined primarily to the vascular compartment. Four (12.5%) of the 32 subjects receiving ch-mAb7F9 were confirmed to have developed a human anti-chimeric antibody response by the end of the study; however, this response did not appear to be dose related. Overall, no apparent safety or tolerability concerns were identified; a maximum tolerated dose was not reached in this Phase 1 study. Ch-mAb7F9 therefore appears safe for human administration.  相似文献   

15.
Glycation, the nonenzymatic reaction between the reducing sugar glucose and the primary amine residues on amino acid side chains, commonly occurs in the cell culture supernatant during production of therapeutic monoclonal antibodies (mAbs). While glycation has the potential to impact efficacy and pharmacokinetic properties for mAbs, the most common undesirable impact of glycation is on the distribution of charged species, often a release specification for commercial processes. Existing empirical approaches are usually insufficient to rationalize the effects of cell line and process changes on glycation. To address this gap, we developed a kinetic model for estimating mAb glycation levels during the cell culture process. The rate constant for glycation, including temperature and pH dependence, was estimated by fitting the kinetic model to time-course glycation data from bioreactors operated at different process settings that yielded a wide range of glycation values. The parameter values were further validated by independently estimating glycation rate constants using cell-free incubation studies at various temperatures. The model was applied to another mAb, by re-estimating the activation energy to account for effect of a glycation “hotspot”. The model was further utilized to study the role of temperature shift as an approach to reduce glycation levels in the manufacturing process for mAb2. While a downshift in temperature resulted in lowering of glycation levels for mAb2, the model helped elucidate that this effect was caused due to contribution from changes in glucose consumption, mAb secretion and temperature, instead of a direct impact of temperature alone on the kinetic rate of glycation.  相似文献   

16.
The neonatal Fc receptor (FcRn) has been demonstrated to contribute to a high bioavailability of monoclonal antibodies (mAbs). In this study, we explored the cellular sites of FcRn-mediated protection after subcutaneous (SC) and intravenous (IV) administration. SC absorption and IV disposition kinetics of a mAb were studied in hFcRn transgenic (Tg) bone marrow chimeric mice in which hFcRn was restricted to radioresistant cells or hematopoietic cells. SC bioavailabilities close to 90% were observed in hFcRn Tg mice and chimeric mice with hFcRn expression in hematopoietic cells, whereas SC bioavailabilities were markedly lower when FcRn was missing in hematopoietic cells. Our study demonstrates: 1) FcRn in radiosensitive hematopoietic cells is required for high SC bioavailability, indicating first-pass catabolism after SC administration by hematopoietic cells; 2) FcRn-mediated transcytosis or recycling by radioresistent cells is not required for high SC bioavailability; and 3) after IV administration hematopoietic and radioresistent cells contribute about equally to clearance of the mAb. A pharmacokinetic model was devised to describe a mixed elimination via radioresistent and hematopoietic cells from vascular and extravascular compartments, respectively. Overall, the study indicates a relevant role of hematopoietic cells for first-pass clearance of mAbs after SC administration and confirms their role in the overall clearance of mAbs.  相似文献   

17.
The pig liver esterase (PLE) assay has been designed to "reproduce" in vitro the first step of the metabolism of phosphoramidate pro-drugs that generates the free amino acyl phosphoramidate intermediate which has been described as a key metabolite necessary but not sufficient for the biological activity. The method could be used as a predictive tool for the likely in vitro biological activity as well as for Structure-Activity Relationship establishment (SAR).  相似文献   

18.
Using a simple test for rapid identification and quantification of pesticide multiresidues in food and environmental samples is a long-cherished approach for practical monitoring purposes. Here two gold-based lateral-flow strips (strip A and strip B) were investigated for simultaneous detection of carbofuran and triazophos. For the strip A format, a bispecific monoclonal antibody (BsMcAb) against both carbofuran and triazophos was employed to prepare the immunogold probe. For the strip B format, anti-carbofuran monoclonal antibody (McAb) and anti-triazophos McAb separately labeled with colloidal gold were combined as detector reagents. By comparison of visual results from pesticide standard tests between the two formats, the strip B assay manifested higher sensitivities for both pesticides. Analysis of spiked water samples by the preferable strip indicated that the detection limits for carbofuran and triazophos were 32 and 4 μg/L, respectively. The strength of the portable one-step strip assay was in the simultaneous screening for two pesticides within a short time (8-10 min) without any equipment.  相似文献   

19.
Toxoplasma gondii is the etiologic agent of toxoplasmosis. Although the combination of sulfadiazine and pyrimethamine is used as therapy for this disease, these drugs can have serious side effects and its use is limited in pregnancy. Therefore there is a need for new anti-T. gondii drugs in the clinic. Some systems for T. gondii drug screening have been described, but these have limitations and can be difficult. In order to solve these problems, we established a system to screen drugs in vitro that involved using cell viability methods to calculate drug selectivities, which are Trypan blue, [3-(4,5-dimethylthiazol-zyl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazoliuzolium, inner salt] (MTS) method and lactate dehydrogenase (LDH) assay. These assays were simple to establish and perform. The IC50 values calculated from the morphological assay were not significantly different from the EC50 values calculated using the other three methods. In particular, the results of the morphological assay showed a distinct association with the MTS assay (R = 0.9841). These assays could be used for a wide range of applications in the screening of new drugs and may provide an alternative to the techniques currently used to screen for candidate anti-T. gondii compounds in vitro. In this study, we also tested many compounds and identified some that had a good anti-T. gondii effect in vitro based on the MTS assay. This simple and fast system allowed us to determine which compounds to investigate further using in vivo experiments.  相似文献   

20.
Previous publications demonstrated that the extrapolated solubility by polyethylene glycol (PEG) precipitation method (Middaugh et al., J Biol Chem 1979; 254:367–370; Juckes, Biochim Biophys Acta 1971; 229:535–546; Foster et al., Biochim Biophys Acta 1973; 317:505; Mahadevan and Hall, AIChE J 1990; 36:1517–1528; Stevenson and Hageman, Pharm Res 1995; 12:1671–1676) has a strong correlation to experimentally measured solubility of proteins. Here, we explored the utility of extrapolated solubility as a method to compare multiple protein drug candidates when nonideality of a highly soluble protein prohibits accurate quantitative solubility prediction. To achieve high efficiency and reduce the amount of protein required, the method is miniaturized to microwell plate format for high‐throughput screening application. In this simplified version of the method, comparative solubility of proteins can be obtained without the need of concentration measurement of the supernatant following the precipitation step in the conventional method. The monoclonal antibodies with the lowest apparent solubilities determined by this method are the most difficult to be concentrated, indicating a good correlation between the prediction and empirical observations. This study also shows that the PEG precipitation method gives results for opalescence prediction that favorably compares to experimentally determined opalescence levels at high concentration. This approach may be useful in detecting proteins with potential solubility and opalescence problems prior to the time‐consuming and expensive development process of high concentration formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号