首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peptide chain initiation factor EIF-1 forms a ternary complex, Met-tRNAf·EIF-1·GTP in the absence of Mg++ and the preformed complex is stable to Mg++. However, with homogeneous preparations of EIF-1, addition of Mg++ during the initial formation of the ternary complex strongly inhibits the complex formation.A heat stable dialyzable factor (EIF-11) which mostly remains associated with the high molecular weight protein complex, EIF-2 (TDF) during purification of the peptide chain initiation factors, has been purified using a phenol extraction procedure. EIF-11 restores the Met-tRNAf binding activity of EIF-1 in the presence of 1 mM Mg++; in the presence of EIF-11, Met-tRNAf binding by EIF-1 shows a sharp Mg++ optimum around 1 mM. EIF-11 is heat stable, alkali stable, dialyzable and pronase sensitive. The same EIF-11 preparation also strongly inhibits Met-tRNAf binding to EIF-1 in the absence of Mg++ and stimulates protein synthesis in a mRNA-dependent rabbit reticulocyte lysate system.  相似文献   

2.
These studies have shown that in the crude system of rat liver mitochondria the branched-chain α-keto acid dehydrogenase activities are activated at high (10.0mM) Mg++ concentrations favoring dephosphorylation, and are inactive at low (1.0mM) Mg++ concentrations favoring phosphorylation. In this crude system, α-Ketoglutarate dehydrogenase activity was also regulated in this manner. In general, the optimum Mg++ and ATP levels for activation were 10mM and 1.0mM respectively.  相似文献   

3.
d-Ribulose-1,5-bisphosphate carboxylase fromThiobacillus neapolitanus was isolated by differential centrifugation, sucrose density gradient centrifugation, and DEAE-Sephadex column chromatography. The specific activity of the purified enzyme was 2.8 μmol CO2 fixed/min/mg protein. The enzyme's homogeneity was indicated by a single migrating band during polyacrylamide disc gel electrophoresis and as a single symmetrical schlieren peak that sedimented at a constant rate during ultracentrifugation. TheS 20,w was 18.2; the molecular weight, 500,000±20.000. Sodium dodecyl sulfate polyacrylamide disc gel electrophoresis resolved two polypeptide chains of 55,000 and 11,000 daltons. The pH optimum 0f 7.75 with 9 mM MgCl2 shifted to 7.45 with 59 mM MgCl2. Enzyme dialyzed free of Mg++ was inactive and no other divalent cation substituted for Mg++. TheK m (Mg++),K m (CO2), andK m (RuBP) were 0.59 mM, 0.85 mM, and 0.092 mM, respectively. The inhibition by 6-phosphogluconate was competitive and no stimulation of activity could be demonstrated.  相似文献   

4.
SYNOPSIS High hydrostatic pressure is known to interfere with mitosis, cytokinesis and synthesis of DNA, RNA and protein. In Tetrahymena, incorporation of phenylalanine and formation of polysomes are known to be pressure-sensitive. Microsomal preparations from Tetrahymena pyriformis GL can incorporate [14C]-phenylalanine into polypeptides. Incorporation was enhanced by addition of supernatant fraction and 14.5 mM Mg++ An energy-generating system and exogenous messenger (poly U) were essential for polypeptide biosynthesis, Microsomes from pressurized cells (14,000 psi for 5 min) incorporated [14C]phenylalanine as efficiently as control microsomes. Microsomal function was not grossly damaged by pressure in a test system containing exogenous messenger, crude microsomal preparation, exogenous energy-generating system and supernatant fraction containing activating enzymes.  相似文献   

5.
CHARACTERIZATION OF LYMPHOCYTE TRANSFORMATION INDUCED BY ZINC IONS   总被引:3,自引:0,他引:3       下载免费PDF全文
Lymphocyte cultures from all normal human adults are stimulated by zinc ions to increase DNA and RNA synthesis and undergo blast transformation. Optimal stimulation occurs at 0.1 mM Zn++. Examination of the effects of other divalent cations reveals that 0.01 mM Hg++ also stimulates lymphocyte DNA synthesis. Ca++ and Mg++ do not affect DNA synthesis in this culture system, while Mn++, Co++, Cd++, Cu++, and Ni++ at concentrations of 10-7–10-3 M are inhibitory. DNA and RNA synthesis and blast transformation begin to increase after cultures are incubated for 2–3 days with Zn++ and these processes reach a maximum rate after 6 days. The increase in Zn++-stimulated lymphocyte DNA synthesis is prevented by rendering cells incapable of DNA-dependent RNA synthesis with actinomycin D or by blocking protein synthesis with cycloheximide or puromycin. Zn++-stimulated DNA synthesis is also partially inhibited by 5'-AMP and chloramphenicol. Zn++ must be present for the entire 6-day culture period to produce maximum stimulation of DNA synthesis. In contrast to its ability to independently stimulate DNA synthesis, 0.1 mM Zn++ inhibits DNA synthesis in phytohemagglutinin-stimulated lymphocytes and L1210 lymphoblasts.  相似文献   

6.
Isolated human red blood cell membrane fragments (RBCMF) were found to take up Ca++ in the presence of ATP.1 This ATP-dependent Ca++ uptake by RBCMF appears to be the manifestation of an active Ca++ transport mechanism in the red cell membrane reported previously (Schatzmann, 1966; Lee and Shin, 1969). The influences of altering experimental conditions on Ca++-stimulated Mg++ ATPase (Ca++ ATPase) and Ca++ uptake of RBCMF were studied. It was found that pretreatment of RBCMF at 50°C abolished both Ca++ ATPase and Ca++ uptake. Pretreatment of RBCMF with phospholipases A and C decreased both Ca++ ATPase and Ca++ uptake, whereas pretreatment with phospholipase D did not significantly alter either Ca++ ATPase or Ca++ uptake. Both Ca++ ATPase and Ca++ uptake had ATP specificity, similar optimum pH's, and optimum incubation temperatures. From these results, it was concluded that Ca++ uptake is intimately linked to Ca++ ATPase.  相似文献   

7.
The insulin mimic, peroxide of vanadate (pervanadate), stimulated 35S-methionine incorporation into Xenopus oocyte protein in a Mg2+-dependent manner. Reducing the extracellular Mg2+ concentration from 1.0 to 0.1 mM decreased the pervanadate-stimulated component of incorporation by 35%; with 0.01 mM Mg2+ or lower, the pervanadate-stimulated component was abolished. In addition, reducing extracellular Mg2+ to 0.01 mM inhibited about 50% of the insulinstimulated component of methionine incorporation. Mg2+ depletion had no effects on incorporation in controls or when protein synthesis was stimulated by Zn2+ or bovine growth hormone. Thus, not all substances that stimulated protein synthesis showed a dependence on extracellular Mg2+. Reducing extracellular Ca2+ had no effects on methionine incorporation in control cells or in cells stimulated by pervanadate or insulin. When oocytes maintained in a paraffin oil medium were brought into contact with a 0.5 m?I droplet of buffer containing the Mg2+ indicator dye, mag-fura-2, and pervanadate, apparent droplet Mg2+ decreased rapidly, indicating net uptake by the cells. Insulin also caused a net uptake of Mg2+. In contrast, apparent extracellular Mg2+ was constant when cells were in contact with droplets containing no effectors. Together, these data indicate that extracellular Mg2+, but not Ca2+, is involved in the stimulation of protein synthesis by pervanadate, and to a lesser extent by insulin. Pervanadate appears to induce a net uptake of Mg2+, and this change in membrane transport may be an early event in signalling the increase in translation. © 1995 Wiley-Liss, Inc.  相似文献   

8.
In pancreatic islets prelabelled with (3H) adenine, Ba++ augmented (3H) cyclic AMP in 1–10 min incubations. 3-isobutyl-l-methylxanthine markedly enhanced and prolonged the Ba++-induced nucleotide as well as the insulin response. In the presence of the methyl xanthine 1.6 mM Ba++ was a maximally and 0.4 mM a submaximally effective concentration both for the stimulation of (3H) cyclic AMP and insulin. A 5-fold excess of Ca++ partly inhibited the Ba++-induced nucleotide and — more profoundly — the insulin response. Increasing Mg++ from 2 to 10 mM was also inhibitory. Stimulation by Ba++ was observed in the absence as well as in the presence of D-glucose. It is concluded that the insulinotropic action of Ba++ is at least partly mediated by cyclic AMP.  相似文献   

9.
The effect of spermine on the binding of AcPhe-tRNA to poly(U)-programmed ribosomes (step 1) and on the puromycin reaction (step 2) has been studied in a cell-free system, derived from E. coli.In the absence of ribosomal wash (FWR fraction) and at suboptimal concentration of Mg++ (6 mM), spermine stimulated the binding of AcPhe-tRNA at least five fold, while at 10 mM Mg++ there was a three fold stimulation. The above stimulatory effect was decreased at 6 mM Mg++, or was abolished at 10 mM Mg++ by the presence of FWR during the binding. Beside the stimulatory effect, spermine enhanced the stability of initiation complex AcPhe-tRNA-poly(U)-ribosome.In step 2, spermine affected the final degree of puromycin reaction and the activity status of peptidyltransferase. Both stimulatory and inhibitory effects have been observed, depending on the experimental conditions followed during the binding of the donor and during the peptide bond formation.  相似文献   

10.
Effects on Mg++ transport in rat liver mitochondria of three reagents earlier shown to affect mitochondrial K+ transport have been examined. The sulfhydryl reactive reagent phenylarsine oxide, which activates K+ flux into respiring mitochondria, also stimulates Mg++ influx. The K+ analog Ba++, when taken up into the mitochondrial matrix, inhibits influx of both K+ and Mg++. The effect on Mg++ influx is seen only if Mg++, which blocks Ba++ accumulation, is added after a preincubation with Ba++. Thus the inhibition of Mg++ influx appears to require interaction of Ba++ at the matrix side of the inner mitochondrial membrane. Added Ba++ also diminishes observed rates of Mg++ efflux but not K+ efflux. This difference may relate to a higher concentration of Ba++ remaining in the medium in the presence of Mg++ under the conditions of our experiments. Pretreatment of mitochondria with dicyclohexylcarbodiimide (DCCD), under conditions which result in an increase in the apparentK m for K+ of the K+ influx mechanism, results in inhibition of Mg++ influx from media containing approximately 0.2 mM Mg++. The inhibitory effect of DCCD on Mg++ influx is not seen at higher external Mg++ (0.8 mM). This dependence on cation concentration is similar to the dependence on K+ concentration of the inhibitory effect of DCCD on K+ influx. Although mitochondrial Mg++ and K+ transport mechanisms exhibit similar reagent sensitivities, whether Mg++ and K+ share common transport catalysts remains to be established.Abbreviations used: DCCD, dicyclohexylcarbodiimide; PheAsO, phenylarsine oxide.  相似文献   

11.
Bacterial biofilms adapt and shape their structure in response to varied environmental conditions. A statistical methodology was adopted in this study to empirically investigate the influence of nutrients on biofilm structural parameters deduced from confocal scanning laser microscope images of Paracoccus sp.W1b, a denitrifying bacterium. High concentrations of succinate, Mg++, Ca++, and Mn++ were shown to enhance biofilm formation whereas higher concentration of iron decreased biofilm formation. Biofilm formed at high succinate was uneven with high surface to biovolume ratio. Higher Mg++ or Ca++ concentrations induced cohesion of biofilm cells, but contrasting biofilm architectures were detected. Biofilm with subpopulation of pillar-like protruding cells was distributed on a mosaic form of monolayer cells in medium with 10 mM Mg++. 10 mM Ca++ induced a dense confluent biofilm. Denitrification activity was significantly increased in the Mg++- and Ca++-induced biofilms. Chelator treatment of various biofilm ages indicated that divalent cations are important in the initial stages of biofilm formation.  相似文献   

12.
Studies using a Brij 58 detergent extract of rat liver mitochondria reveal that these organelles can catalyze the time-dependent incorporation of a portion of [3H]ATP into an acid-insoluble product. The activities studied using 8 mM Mn++ or 15 mM Mg++ are stimulated by dithiothreitol and by CTP, GTP or UTP, while that studied using 2 mM Mg++ is not. The incorporated tritium remains bound after incubation in the presence of excess unlabeled ATP and chromatography on Sephadex G-25. The labeled product is insensitive to ribonuclease A and snake venom phosphodiesterase, but is sensitive to pronase. The attached portion of the ATP molecule released upon treatment of the product has been tentatively identified as adenosine for the activities studied using 2 mM Mg++ or 8 mM Mn++ and as AMP (80%) and adenosine (20%) for the reaction studied using 15 mM Mg++.  相似文献   

13.
The relationship between uptake of Ca++ and incorporation of sn-[14C]-glycerol-3-phosphate into phosphatidate, diglyceride, and triglyceride was evaluated in microsomes isolated from livers of normal fed male rats. Uptake of Ca++ was dependent on concentration of Ca++ (0.1 – 2.5 mM), and accompanied by a decrease in the rate of glycerolipid synthesis. The quantity of Ca++ ion taken up at 20 μM CaCl2 in the presence of ATP was equivalent to that observed with 2.5 mM CaCl2 in the absence of ATP. The ATP dependent uptake of Ca++, like the passive uptake at higher concentrations of Ca++, was correlated with inhibition of incorporation of sn-glycerol-3-phosphate into phosphatidate. Accumulation of Ca++ in hepatic microsomes, therefore, appears to result in a calcium-dependent decrease in biosynthesis of phosphatidate and other glycerolipids.  相似文献   

14.
Abstract

Under standard conditions (Mg2+/150 mM NH4 +) ribosomes can quantitatively participate in tRNA binding at Mg2+ concentrations of 12 to 15 mM. The overall poly(U)-directed Phe incorporation and the extent of tRNA binding to either P,E or A sites decrease in a parallel manner when the Mg2+ concentration is lowered below 10 mM. At 4 mM the inactivation amounts to about 80%. The coordinate inactivation of all three binding sites is accompanied by an increasing impairment of the ability to translocate A-site bound AcPhe-tRNA to the P site. The translocation efficiency is already reduced at 10 mM Mg2+, and is completely blocked at 6—8 mM.

The severe inactivation seen at 6 mM Mg2+ vanishes when the polyamines spermine (0.6 mM) and spermidine (0.4 mM) are present in the assay; tRNA binding again becomes quantitative, the total Phe synthesis even exceeds that observed in the absence of polyamines by a factor of 4. In the presence of polyamines and low Mg2+ (3 and 6 mM) two essential features of the allosteric three-site model (Rheinberger and Nierhaus,J.Biol. Chem. 261, 9133 (1986)) are demonstrated. 1) Deacylated tRNA is not released from the P site, but moves to the E site during the course of translocation. 2) Occupation of the E site reduces the A site affinity and vice versa (allosteric interactions between E and A sites).

The quality of an in vitro system for protein synthesis can be assessed by two criteria. First, the incubation conditions must allow a near quantitative tRNA binding. Secondly, protein synthesis should proceed with near in vivo rate and accuracy. The 3 mM Mg2+/NH4 +/polyamine- system seems to be the best compromise at present between these two requirements.  相似文献   

15.
Spermine, spermidine and putrescine produce dose dependent stimulation of the invitro tubulinyl-tyrosine carboxypeptidase. Maximal stimulation was obtained with spermine, spermidine or putrescine at 0.06 mM, 1 mM and 6 mM, respectively. At higher concentrations, the enzyme activity was inhibited. The enzyme was also activated by Mg++; the concentration formaximal effect was 4–6 mM. The stimulation produced by optimal concentration of each amine was unaffected by Mg++ up to 2 mM; higher concentration of Mg++ showed inhibitory effect. At optimal Mg++ concentration, the carboxypeptidase activity was inhibited by increasing amine concentration. The amines at 0.5 or 5 mM did not produce any effect on the incorporation of tyrosine catalyzed by tubulin tyrosine ligase.  相似文献   

16.
Calcium-dependent activation of tryptophan hydroxylase by ATP and magnesium   总被引:10,自引:0,他引:10  
Tryptophan hydroxylase [EC 1.14.16.4; L-tryptophan, tetrahydropteridine: oxygen oxidoreductase (5-hydroxylating)] in rat brainstem extracts is activated 2 to 2.5-fold by ATP and Mg++ in the presence of subsaturating concentrations of the cofactor 6-methyltetrahydropterin (6MPH4). The activation of tryptophan hydroxylase under these conditions results from a reduction in the apparent Km for 6MPH4 from 0.21 mM to 0.09 mM. The activation requires Mg++ and ATP but is not dependent on either cAMP or cGMP. The effect of ATP and Mg++ on enzyme activity was enhanced by μM concentrations of Ca++ and totally blocked by EGTA. These data suggest that tryptophan hydroxylase can be activated by a cyclic nucleotide independent protein kinase which requires low calcium concentrations for the expression of its activity.  相似文献   

17.
An endonuclease activity that acts on alkali-labile lesions in x-irradiated PM2 DNA and recognizes apurinic lesions in heat/acid treated DNA has been partially purified from Drosophila melanogaster embryos and its specific activity monitored throughout early development. The enzyme activity also showed a low level of activity on UV-irradiated DNA. The saturation kinetics observed with both x-irradiated and apurinic PM2 DNA substrates were similar. The endonuclease activity exhibited a broad pH optimum between pH 6 and 8.5 and was almost completely inhibited by 100 mM NaCl, 0.1 mM EDTA, 2 mM CaCl12 and 10 mM NEM. The reaction was not completely dependent on the presence of Mg++cation, but optimum activity was obtained at a concentration of 0.1 mM; concentrations greater than 1 mM Mgs++ were inhibitory. The specific activity of the apurinic endonuclease, partially purified from several stages of embryonic and early larval development, remained the same. Unfertilized eggs exhibited a reduced level of this presumptive repair activity.Abbreviations AP endonucleases Apurinic/apyrimidinic endonucleases  相似文献   

18.
Changes in the chemical reactivity of the sulfhydryl groups of (Na+ + K+)-dependent ATPase can be indicative of conformational changes induced by activating ions. Cyanylation of these groups by 5 mM 2-nitro-5-thiobenzoic acid caused a partial inhibition of enzymatic activity. Both this loss and the incorporation of radioactive cyanide from the 14C-labeled reagent were reduced by inclusion of 50 mM ATP and 150 mM Na+ in the incubation. When 10 mM Mg++ was added in addition, the inactivation was not different from that produced by cyanylation reagent alone, but the radioactive labeling of protein increased significantly. The data indicate that the sulfhydryl groups of this enzyme exist in two populations, one of which must be free if the enzyme is to function. The other, not essential for enzymatic activity, becomes accessible only when the Na+ and Mg++-dependent phosphorylation of the enzyme alters its conformation. Inactivation of the enzyme by freezing and thawing increases the incorporation of radioactivity but destroys the responsiveness of labeling to cations and ATP.  相似文献   

19.
Fractionation of the 40–80% (NH4)2SO4 fraction of a soluble rat brain extract on DEAE cellulose resolves three species of enolase activity, two of which react with antiserum to neuron specific protein from rat (NSP-R) and one which does not react. Direct assay of pure neuron specific protein from rat, cat and human brain (NSP-R, NSP-C, NSP-H) as well as bovine brain 14-3-2, using 2 different assay systems demonstrate that all these preparations display enolase activity of between 40 and 70 units/mg. This activity is Mg++ dependent and inhibited by fluorophosphate in all cases. Kinetic parameters such as Km for Mg++, 2 PGA, and pH optimum were determined for the 2 different NSP preparations and also for bovine brain 14-3-2 protein.  相似文献   

20.
The effect of morphine on ATPase of synaptic plasma membranes (SPM) and synaptic vesicles isolated from the mouse brain was studied. The activity of synaptic vesicle Mg++-dependent ATPase from mice rendered morphine tolerant and dependent by pellet implantation was 40% higher than that from placebo implanted mice. However, the activities of Mg++-dependent ATPase and Na+, K+ activated ATPase of SPM of tolerant and nontolerant mice were not significantly different. The activity of synaptic vesicular Mg++-dependet ATPase was dependent on the concentration of Mg++ but not of Ca++; maximum activity was obtained with 2 mM MgCl2. On the other hand, Mg++-dependent ATPase activity of SPM was dependent on both Mg++ and Ca++, activity being maximum using 2 mM MgCl2 and 10?5 M CaCl2. It is suggested that this stimulation of ATPase activity may alter synaptic transmission and may thus be involved in some aspects of morphine tolerance and dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号