首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. The fine structure of Trichomonas gallinae has been examined by electron microscopy and correlated with previous light microscope observations. A composite diagram of the flagellate, derived from both types of examination, is presented. Details of relationships of various mastigont organelles are documented by electron micrographs. The extent of the pelta and its connection to the capitulum of the axostyle have been determined. Four types of kinetosome rootlets have been described. One consists of superficial “filaments” radiating from each of the 9 triplet microtubules of kinetosomes #1, #2 and #3. A 2nd type of rootlet structure is represented by single comma-shaped filaments emerging clockwise from kinetosomes #1 and #3. The filament from kinetosome #1 has a periodic structure similar to that of the marginal lamella with which it is believed to connect. A 3rd type of rootlet emerges from kinetosome #2 as a sheet of about 9 filaments which traverse a sigmoid course and terminate on the inner surface of the microtubules of the pelta near the peltar-axostylar junction. The 4th set of structures consists of the costa and parabasal filaments. These structures have major periodicities of similar dimension but have readily differentiable repeating units. The costa appears to originate at the kinetosome of the recurrent flagellum, but its origin is also contiguous with that of parabasal filament 2 which has some continuity with kinetosomes #2 and #3. Parabasal filament 1, on the other hand, arises solely from or near kinetosome #2. Occasional observations of a costa and a parabasal filament in juxtaposition over a great part of their length has led to the suggestion that the parabasal filament may play a role in the development of the costa. Periodic and filamentous structures have been observed in paraxostylar and paracostal granules and in nearby cytoplasm. Their possible role in providing substance for the developing axostyle and the costa is discussed. The results are discussed in the light of available information pertaining to structure of various trichomonad species as revealed by light and electron microscopy.  相似文献   

2.
SYNOPSIS. Tritrichomonas foetus shares many fine-structural features with the previously described genera of the subfamily Trichomonadinae. These include the arrangement and structure of the kinetosomes, of most rootlet filaments, including the sigmoid filaments of kinetosome #2, as well as those of the parabasal apparatus and of the pelta-axostyle complex. On the other hand, this species, and presumably all other Tritrichomonas augusta-type flagellates, differ from Trichomonadinae in certain important details. Among the features which T. foetus does not share with Trichomonadinae are the fine structure of the costa and of the undulating membrane, as well as several organelles not found in the latter subfamily. The costal base of Trichomonadinae is replaced in T. foetus and other Tritrichomonadinae by a comb-like structure, extending between the costa and the infrakinetosomal body. The suprakinetosomal body, connected to kinetosome #2 in the region of attachment of the sigmoid filaments, and the infrakinetosomal body, which appears to contribute to the proximal marginal lamella, are organelles evidently restricted to Tritrichomonadinae. The undulating membrane consists of 2 parts. The proximal part is a fold-like differentiation of the dorsal body surface, the dorsal part of which contains the proximal marginal lamella. The distal part of the undulating membrane, with no obvious physical connection to the fold, encloses the distal marginal lamella in its ventral, and the microtubules of the recurrent flagellum in its dorsal area. The organelle of T. foetus which by its size, certain structural characteristics, and relationship with the undulating membrane and some organelles, including the paracostal granules, is analogous to the costa of Trichomonadinae and of Trichomitopsis termopsidis (subfamily Tritrichomonadinae), conforms in the structure of its periodic cross-striations to that of the parabasal filaments of the latter organisms; its origin corresponds closely to that of parabasal filament 2 of Trichomonadinae.  相似文献   

3.
SYNOPSIS. Monocercomonas shares many fine-structural features with all other trichomonads. These include the basic arrangement of the kinetosomes as well as of the recurrent and 3 anterior flagella. The pelta-axostyle complex and the parabasal apparatus, i.e. the Golgi complex and the periodic filaments, also conform to the trichomonad pattern. Of interest with regard to the crucial evolutionary position of Monocercomonas, considered to represent the most primitive trichomonad type, is the fact that it has some structures in common with other Monocercomonadidae and Trichomonadinae and others in common with Devescovinidae and Tritrichomonadinae. Among the former organelles are the marginal lamella and the costal base, and among the latter, the comb-like organelle situated between the infrakinetosomal body and parabasal filament 2 as well as the infrakinetosomal body. No traces of either costa or undulating membrane have been noted, but a complex structure homologous to the marginal lamella of Hypotrichomonas and Trichomonadinae is found underlying the short anteriormost portion of the recurrent flagellum that is attached to the body surface. Observations of sections of selected division stages indicate the potential of parental kinetosomes #1 and #3 to become daughter kinetosome #2.  相似文献   

4.
SYNOPSIS. Tritrichomonas muris shares many fine-structural details with the previously described members of the family Trichomonadidae, and especially with the organisms belonging to the subfamily Tritrichomonadinae. Among the features which T. muris has in common with all Trichomonadidae and in all probability with other Trichomonadida are the arrangement and structure of: the kinetosomes; many rootlet filaments, including the sigmoid filaments of kinetosome #2; the parabasal apparatus; and the pelta-axostyle complex. The structures which T. muris-type flagellates share with other Tritrichomonadinae, and especially with Tritrichomonas augusta-type species (including T. foetus), but not with Trichomonadinae that have been studied to date, are: the Type A costa; a comb-like structure, which appears to have replaced the costal base of Trichomonadinae and of Hypotrichomonas; the suprakinetosomal body, rudimentary in T. muris; and the infrakinetosomal body. The undulating membrane, like that of T. augusta-type organisms, consists of a proximal and a distal part. The proximal part, which contains the proximal marginal lamella, is less developed in T. muris than in T. augusta-type flagellates, being represented by a relatively low ridge for the entire length of the organism. The distal part of the membrane in T. muris, on the other hand, is more highly developed; it is a heavy cord, with a distal marginal lamella which consists of a large triangular organelle having a highly ordered structure and 2 less well defined cords distal to this organelle. The tubules of the recurrent flagellum occupy the area distal to the cords. The sigmoid filaments of kinetosome #2, unlike those of other Trichomonadidae examined to date, extend posteriorly to the peltar-axostylar junction; they seem to terminate within the cytoplasm near, but not connected to the axostyle. In addition to the Type A costa, there is a small rootlet filament, which appears to be homologous to the rudimentary costa noted in Hypotrichomonas. Some of the paraxostylar and paracostal granules consist of an outer, relatively dense layer and an inner “core” of moderate density; between the 2 there is a lucent ring. The discussion deals in some detail with the possible nature of the paraxostylar and paracostal granules in trichomonads. The taxonomic status of Tritrichomonas cricetus (Wantland) [Tritrichomonas criceti (Wantland) emend. Levine] and Trichomonas criceti Ray & Sen Gupta is discussed in an appendix; it is concluded that both of these names are synonyms of T. muris (Grassi).  相似文献   

5.
SYNOPSIS. Culture forms and lumen-dwelling phases of the ameboflagellate Histomonas meleagridis, which are structurally indistinguishable from each other, have a single flagellum. Their well-developed pelta is connected to the anterior segment of the broad, spatulate axostylar capitulum, applied to the left-ventral surface of the nearly spheroid or somewhat ellipsoid or ovoid nucleus. The capitulum narrows into a very slender axostylar trunk that tapers to a fine point and does not project beyond the body surface. The parabasal apparatus consists of a V-shaped parabasal body and a large parabasal filament. A new flagellum appears early during division and soon approaches its full length. The 2 flagella persist thruout division and each becomes the locomotory organelle of a daughter histomonad. The arms of the parental parabasal body appear to separate, each going to 1 of the daughter mastigont systems; some parabasal material is lost early in division. The 2nd arm is regenerated in each daughter parabasal body. The large parabasal filament seems not to be retained in the parental mastigont system, and new filaments are seen at both poles before 2 daughter nuclei are formed. The old axostyle degenerates from the anterior toward the posterior end; at the same time lamellar primordia of the daughter pelta-axostyle complexes appear in the separating mastigont systems that are connected by an extranuclear spindle during the entire division process. The structure and taxonomic status of H. meleagridis are discussed in the light of this and previous studies.  相似文献   

6.
SYNOPSIS. The nonpathogenic flagellate from the cecum of fowl, hitherto known as Histomonas wenrichi Lund, is an actively ameboid organism equipped with 4 flagella. Three of the flagella, subequal in length, are applied to one another for a short distance anterior to their origin in the kinetosomal complex and typically terminate in knob-like expansions; the 4th flagellum originates independently of the others and ends in a fine filament. A short, wide pelta is joined to the anterior part of the broad, spatulate axostylar capitulum applied to the left-ventral surface of the ellipsoidal, spheroidal, or ovoidal nucleus. Posterior to the nucleus the capitulum narrows into a slender axostylar trunk, which does not project beyond the body surface. The parabasal body, associated with a long, stout parabasal filament, is dorsal and to the right of the nucleus. On the basis of the flagellar number, the parasite is placed in a new genus Parahistomonas. A new subfamily, Protrichomonadinae, is created within the appropriately emended trichomonad family Monocercomonadidae for Parahistomonas wenrichi (Lund) comb. nov. as well as for Histomonas meleagridis (Smith) and Protrichomonas legeri (Alexeieff).  相似文献   

7.
SYNOPSIS. The fine structure of Hypotrichomonas acosta resembles in many respects that of Trichomonadidae, and especially of members of the sub-family Trichomonadinae which have been examined to date by electron microscopy. In addition, the flagellate has certain ultrastructural differences from the latter organisms, some of which are of phylogenetic significance. Among these, the structure of the undulating membrane and the apparently occasional presence of a fine filament which may be considered as homologous to the costa of Trichomonadidae are the most important. The undulating membrane is represented by a rather low and otherwise poorly developed dorsal cytoplasmic fold with an ill-defined distal marginal lamella; the recurrent flagellum is applied near the dorsum of the fold. In a very few preparations a relatively short filament, of a diameter falling below the resolution limits of light microscope, is seen in a position which corresponds to that of the costa of Trichomonadidae. The identity of the filament as a probable rudimentary costa is supported also by the character of its periodicity. The rare appearance of the rudimentary costa among hundreds of sections may be explained either by its minute dimensions or by its absence from many hypotrichomonads. Other structures recorded for the first time in trichomonads are: the fine filamentous connections of the axostylar microtubules; the branching of parabasal filament 2; and the unusually organized, perhaps helical, polysomes, which are found in addition to the ribosomal complexes associated with the endoplasmic reticulum and commonly found in trichomonads. A detailed analysis of interconnections among various mastigont structures is presented and several kinds of cytoplasmic inclusions are described. H. acosta is of interest in the study of the nuclear envelope and presence of nuclear pores, which are numerous and conspicuous in this flagellate. The fine structure of the hypotrichomonad is discussed in relation to that of other trichomonads and in some instances to that of other protozoa.  相似文献   

8.
I B Ra?kov 《Tsitologiia》1975,17(7):739-747
The ciliature of T. prenanti Dragesco 1960 (forma oligocineta Raikov et Kovaleva, 1968) consists of 14-18 ventral and lateral longitudinal kineties with paired kinetosomes, carrying either two cilia or one cilium per kinetosome pair (in the latter case, the nonciliated kinetosome is always the posterior one). The ectoplasmic fibrillar system belongs to the postciliary type. A pair of kinetosomes shares a common basal plate. The anterior kinetosome gives rise to a short ribbon of transverse microtubules, the posterior one, to a poorly developed kinetodesmal filament and to a strong ribbon of postciliary microtubules. The latter proceeds backwards along 8 to 12 kinetosome pairs, being incorporated into a laminated postciliodesma which accompanies each kinety on its right side. Rows of Golgi elements, sending secretory vesicles and channels towards the body surface, exist beneath the kinetosome bases. Each kinety is accompanied on its left by a microfibrillar myoneme, surrounded by perimyary vesicles and underlain by a row of mitochondria. The median part of the dorsal surface is nonciliated; the cytoplasm here is rich of membrane systems, contains peripheral, electron-dense, extrusible inclusions and sometimes also bacteria. The electron-dense inclusions develop in the endoplasm, in close contact with mitochondria. The endoplasm contains also large microfibrillar spheres of unknown nature.  相似文献   

9.
SYNOPSIS. Trichomitus batrachorum (Perty) shares with Trichomonadinae most of its fine-structural characteristics, especially those pertaining to the undulating membrane that consists of a high body fold, enclosing the loop-shaped, periodic marginal lamella, and of the recurrent flagellum applied to the fold. This flagellate has also certain structures, i.e. the costal base, comb-like organelle, and well developed marginal lamella, in common with Monocercomonas. It shares with Hypotrichomonas the costal base; large pelta; very fine fibers perpendicular to, and connecting the axostylar microtubules; structural details of the most proximal segment of the marginal lamella; and general relationships between dorsal body fold (poorly developed in Hypotrichomonas) and the recurrent flagellum. All these electronmicroscopic findings support the crucial position of Trichomitus in the evolutionary sequence MonocercomonasHypotrichomonasTrichomitus→ Trichomonadinae suggested previously by lightmicroscopic observations. Further, Trichomitus shares with all Tritrichomonadinae the comb-like structure, not found either in Hypotrichomonas or Trichomonadinae; and it has in common with Tritrichomonas also the costa with Type A periodicity, being the only member of Trichomonadinae with this type of supporting organelle. It appears, therefore, that Trichomitus-type organisms represent an important link in the evolution of all Trichomonadidae from Monocercomonadidae.  相似文献   

10.
The pellicular framework of Opalina obtrigonoidea consists of numerous longitudinal ribs parallel to the kineties. These ribs lie erect on the cell surface, and each is composed of striated longitudinal fibers. A membrane covers the ribs and the ectoplasm between them. Flagella, of conventional structure, emerge from the ectoplasm between the ribs. The two central fibers of each flagellum end at the cell surface; the nine peripheral fibers continue for about 400 mµ into the cell to form an open tubular kinetosome. From the anterolateral curvature of each kinetosome arise two rows of fibrils, each fibril oriented perpendicular to the cell surface and about 150 A in diameter. The two rows converge anteriorly and probably meet the next adjacent kinetosome. Minute granules or tubules, arranged in oblique rows and at least sometimes accompanied by very fine fibers, lie at the surface of the ectoplasm but show no detectable connection with the kinetosomes. The whole flagellar apparatus of Opalina thus bears a general resemblance to the infraciliature of some holotrich ciliates, but the degree of evolutionary relationship between them remains uncertain.  相似文献   

11.
SYNOPSIS. Monocercomonas molae from the hindgut of the sunfish Mola mola is described. The host was taken from southern California coastal waters in October, 1964. The body of the flagellate is 8.0 × 10.7 microns. A single basal granule complex gives rise to 4 flagella, one of which is recurrent. The axostyle is relatively stout, with argentophilic granules, and possesses a periaxostylar ring. The capitulum of the axostyle continues into the sickle-shaped pelta, and the parabasal body is rod-shaped or lobed and roughly triangular in cross-section.  相似文献   

12.
ABSTRACT. The cell surface of the synhymeniid ciliate, Zosterodasys agamalievi , consists of shallow kinetal grooves separated by low cortical ridges. Numerous electron-opaque bodies are located in the cortical ridges, inside the kinetal grooves, and are distributed in parallel rows between adjacent kineties. Well-developed alveoli are present beneath the cell surface membrane. Zosterodasys agamalievi has a single micronucleus and a homomerous macronucleus. The infraciliature of the somatic monokinetid consists of an anteriorly-directed kinetodesmal fiber, a well-developed divergent postciliary microtubular ribbon, radially-oriented transverse microtubules, and a short striated rootlet, which extends anteriorly from the base of the kinetosome into the cell. Zosterodasys agamalievi has a perioral band of paired cilia, the synhymenium, that winds obliquely across the ventral surface of the body, just posterior to the cytostome. The infraciliature of the anterior kinetosome of the synhymenium consists of two postciliary microtubules; a well-developed, divergent post-ciliary ribbon of microtubules and a short kinetodesmal fiber are associated with the posterior kinetosome. The cytopharynx is supported by 14-16 nematodesmata which are capped distally by a capitulum. The cytopharynx is bound proximally by a fibrous sheath and is lined by radially-arranged microtubular ribbons. No obvious oral ciliature is present.  相似文献   

13.
The electron microscope was used to study the structure and three dimensional relationships of the components of the body cortex in thin sections of Paramecium multimicronucleatum. Micrographs of sections show that the cortex is covered externally by two closely apposed membranes (together ~250 A thick) constituting the pellicle. Beneath the pellicle the surface of the animal is molded into ridges that form a polygonal ridgework with depressed centers. It is these ridges that give the surface of the organism its characteristic configuration and correspond to the outer fibrillar system of the light microscope image. The outer ends of the trichocysts with their hood-shaped caps are located in the centers of the anterior and posterior ridges of each polygon. The cilia extend singly from the depressed centers of the surface polygons. Each cilium shows two axial filaments with 9 peripheral and parallel filaments embedded in a matrix and the whole surrouned by a thin ciliary membrane. The 9 peripheral filaments are double and these are evenly spaced in a circle around the central pair. The ciliary membrane is continuous with the outer member of the pellicular membrane, whereas the plasma membrane is continuous with the inner member of the pellicular membrane. At the level of the plasma membrane the proximal end of the cilium is continuous with its tube-shaped basal body or kinetosome. The peripheral filaments of the cilium, together with the material of cortical matrix which tends to condense around them, form the sheath of the basal body. The kinetodesma connecting the ciliary kinetosomes (inner fibrillar system of the light microscopist) is composed of a number of discrete fibrils which overlap in a shingle-like fashion. Each striated kinetosomal fibril originates from a ciliary kinetosome and runs parallel to other kinetosomal fibrils arising from posterior kinetosomes of a particular meridional array. Sections at the level of the ciliary kinetosomes reveal an additional fiber system, the infraciliary lattice system, which is separate and distinct from the kinetodesmal system. This system consists of a fibrous network of irregular polygons and runs roughly parallel to the surface of the animal. Mitochondria have a fine structure similar in general features to that described for a number of mammalian cell types, but different in certain details. The structures corresponding to cristae mitochondriales appear as finger-like projections or microvilli extending into the matrix of the organelle from the inner membrane of the paired mitochondrial membrane. The cortical cytoplasm contains also a particulate component and a system of vesicles respectively comparable to the nucleoprotein particles and to the endoplasmic reticulum described in various metazoan cell types. An accessory kinetosome has been observed in oblique sections of a number of non-dividing specimens slightly removed from the ciliary kinetosome and on the same meridional line as the cilia and trichocysts. Its position corresponds to the location of the kinetosome of the newly formed cilium in animals selected as being in the approaching fission stage of the life cycle.  相似文献   

14.
The fine structure of the dorsal bristle complex and pellicle of non-developing Euplotes eurystomus is described in detail by scanning and transmission electron microscopy. The bristle-pit unit is a highly differentiated complex of organelles. The bristle complex is composed of a pair of kinetosomes (basal bodies) joined by a connective. The anterior kinetosome bears the bristle cilium, which contains a polarized network of particles (“lasiosomes”). The posterior kinetosome bears a very short, knob-like “condylocilium,” and has an associated striated fiber. Accessory ribbons of microtubules are also associated with the kinetosome couplets. Parasomal sacs, a septum connecting the bristle cilium to the anterior wall of the pit, core granules of the kinetosomes, and large membranous ampules are described. The organization of the bristle complex bears many similarities to the somatic ciliature of other ciliates. The pellicle of Euplotes is composed of a continucus outer cell membrane subtended by membranous alveoli, which contain a “fibrous mat.” Two sheets of subpellicular microtubules (longitudinal and transverse) are located just beneath the alveoli. The “epiplasm” seen in some other ciliates is apparently absent in Euplotes. The texture of the cell surface is a pattern of folds or rugae composed of the outer cell membrane and the upper membrane of the alveolus. The pattern of rugae probably defines the “silverline-system” of light microscopy.  相似文献   

15.
SYNOPSIS. Several fine-structural changes were observed during formation of the so-called pseudocysts of Trichomitus batrachorum grown in an agar-free medium. Among these changes the most frequent were those of the undulating membrane complex. Internalization of the marginal lamella combined with disappearance of the fin-like, membranous dorsal fold occurred with the highest frequency. In many organisms these alterations were accompanied by internalization of the recurrent flagellum, which, however, remained external in other, presumably earlier stages of pseudocyst formation. In some of the internalized and even still external recurrent flagella the microtubules were in various states of disassembly. The often distended flagellar membrane enclosed large accumulations of filaments 5 nm in diameter. Internalization of the anterior flagella also was noted. Changes similar to those characteristic of the recurrent flagella were not seen, however, among the microtubules of the anterior flagella or among those of the pelta or the axostyle.  相似文献   

16.
SYNOPSIS. Oxytricha fallax and Stylonychia pustulata possess 6 rows of dorsal bristle units. Each dorsal bristle unit consists of a pair of kinetosomes; the anterior kinetosome has a cilium and the posterior kinetosome a ciliary stub. The kinetosome pair, located at the bottom of a cortical pit surrounding the cilium and ciliary stub, is surrounded by an asymmetrical fibrillar mass. Future rows 1-4 are formed from 2 sets of primordia originating within mature dorsal rows 1-3. Rows 5 and 6 originate from the anterior regions of both right marginal cirral primordia. Old dorsal bristle units utilized in formation of primordia are presumably maintained in the new rows of the proter and opisthe; those outside the primordia are resorbed. The morphogenetic pattern of the Oxytrichidae is similar to those of the Urostylidae and Holostichidae, but quite different from that of the Euplotidae.  相似文献   

17.
邹士法  张作人 《动物学报》1989,35(4):60-363
应用生物化学去纤毛、去膜和扫描电镜观察相结合的方法,详细地观察了近亲游仆虫的皮层纤毛器毛基体和非纤电器的结构、模式,揭示和发现了其他游仆虫上尚未明了和未报道过的结构特征。  相似文献   

18.
Hexamastix dobelli n. sp. (Trichomonadidae) is described from the large intestine of the starred tortoise, Testu-do elegans Schoepff. This is the first species of Hexamastix to be reported from a chelonian. The organism is pyriform, oval, or round in shape. There are five anterior flagella, of which two are long and three short and a single recurrent flagellum, which equals the short anterior flagella in length. The axostyle is very slender and projects for some distance outside the body. The nucleus contains three to six granules and has no endosome. The pelta is crescent-shaped and the parabasal body is rod-like. Perinuclear granules are present in the anterior half of the body. The parasite is 6.0 to 16.5 μ long, 2.0 to 10.3 μ wide and the diameter of nucleus is 2.5 μ.  相似文献   

19.
SYNOPSIS. Zoosporulation in Labyrinthula sp. in monoxenic culture was initiated by aggregation of spindle cells into reticulate sori. The spindle cells then changed into rounded or oval cells and formed, de novo, 2 pairs of centrioles at opposite sides of each nucleus. A pair of granular aggregates (protocentrioles) ~ 240 mμ in diameter served as precursor bodies during centriole formation. Spindle microtubules around the prophase nucleus connected the pairs of centrioles but were not found in the nucleoplasm until nuclear envelope fragmentation occurred. Prophase nuclei of uninucleated sporangia contained synaptinemal complexes; therefore, meiosis is presumed to occur. The envelope fragments moved toward the centrioles and regrouped to form the nuclear membranes of the daughter cells. Alternating nuclear and cytoplasmic divisions subdivided the preparation into 8 cells which differentiated into laterally biflagellated zoospores. Flagellar development involved growth of the kinetosome microtubules into a bud which formed over the kinetosome tangential to the cell surface. Kinetosomes were derived directly from centrioles with little differentiation other than addition of an electron-dense core to the lumen of the centriole. Zoospore ultrastructure included a stigma comprised of a row of electron-dense granules located slightly under the plasmalemma and posterior to the pair of kinetosomes. A single row of 17–21 microtubules lay parallel to the stigma granules, one or more being connected to the anterior kinetosome. A striated fiber apparatus similar to that found in some phytoflagellates connected the midregions of the kinetosomes. Fibers 1.0–1.2 μ long were attached to the plasmalemma around the base of the anterior flagellum. Zoospores settled on the substrate and differentiated directly into spindle cells. Since synaptinemal complexes were observed the planonts are probably haploid zoospores and probably not gametes since planogametic copulation was not observed.  相似文献   

20.
Summary— The quick-freezing and freeze-etching technique was used to analyse the cytoskeleton of Tritrichomonas foetus, a pathogenic protozoan of the urogenital tract of cattle. The cytoplasm presented a network of filamentous structures interacting with each other, with the surface of the hydrogenosomes and the nuclear membrane. Two nm wide filamentous structures were found in the luminal space of the Golgi complex, connecting the two faces of each cisterna. The microtubules of the pelta-axostyle system were connected by bridges 30–40 nm long and 10 nm wide, regularly spaced with an interval of 25 nm. The costa is a structure formed by a complex array of filaments and globous structures. It seems to be connected to the recurrent flagellum through a complex network formed by 15 and 10 nm wide filaments which emerge from the peripheral region of the costa and penetrate into the surface projections of the protozoan body to which the recurrent flagellum is attached. Other filaments were seen connecting the surface of these projections with the surface of the flagellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号