首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ROSE, KATHRYN M, BETH NEWMAN, ELIZABETH J. MAYER-DAVIS, JOSEPH V. SELBY. Genetic and behavioral determinants of waist-hip ratio and waist circumference in women twins. Obes Res. 1998;6:383–392. Objectives : This study examines genetic and behavioral determinants of waist-hip ratio (WHR) and waist circumference among women twins. Research Methods and Procedures : Six hundred eighty participants from the second examination of the Kaiser-Permanente Women Twins Study (1989 to 1990) were included. Women ranged in age from 31 to 90 years, and included 59% monozygotic and 41% dizygotic twins. Heritabilities of WHR and waist circumference were estimated (range = 0 to 1) using three different statistical methods. Linear regression models that adjusted for the lack of independence within twin pairs were used to assess associations between behavioral variables, WHR, and waist circumference. Results : Age and body mass index-adjusted heritability estimates ranged from 0.36 to 0.61 for WHR and 0.72 to 0.82 for waist circumference. When considered individually, after adjusting for age and body mass index, all behavioral characteristics, except calorie-adjusted fat intake, were significantly (p<0.10) associated with waist circumference and WHR. Greater central adiposity was associated with lower education, higher alcohol consumption, lower physical activity, current cigarette smoking, higher parity, and postmenopausal status without hormone replacement therapy. In multivariate models, these associations persisted, except neither educational attainment nor alcohol intake was significantly associated with waist circumference. In longitudinal analyses, both measures were positively associated with current or recent-past smoking; infrequent or inconsistent physical activity; and long-term, daily consumption of alcohol. Discussion : These cross-sectional and longitudinal associations are consistent with genetic and behavioral predictors of waist circumference and WHR. Whereas the evidence for genetic influences is stronger for waist circumference, both body fat measures may be similarly influenced by the behavioral factors considered.  相似文献   

2.
3.
The biogenic amine tyramine has been implicated in drug‐induced behavior. The Drosophila inactive mutant is characterized by reduced tyramine and octopamine levels and is defective in cocaine sensitization. To test whether there is an overlap in the use of the amine neurotransmitter system in ethanol‐ and cocaine‐induced behaviors, mutant analyses were extended to the phenotypic characterization of inactive and other mutants effecting the tyramine and octopamine neurotransmitter system. The inactive mutant displays increased ethanol sensitivity and is impaired in the initial startle response upon ethanol application. Furthermore, this mutant fails to regulate its alcohol‐induced hyperactivity properly. In contrast to the defects seen after cocaine application, inactive mutants develop normal ethanol tolerance and sensitize to the locomotor activating effect of ethanol. The tyramine‐β‐hydroxylase mutant (TβH) with increased tyramine and depleted octopamine levels displays normal ethanol sensitivity, a startle repression, and hyperactivates more in response to ethanol. In addition, TβH mutants fail to develop a tolerance to the hyperactivating effect of ethanol. Ethanol‐induced sensitization does not seem to be impaired in either mutant, suggesting that tyramine is not required for this process. The comparative analysis of the phenotypes associated with inactive and TβH mutants suggests that the fine tuning of ethanol‐induced hyperactivity can be correlated with different tyramine levels. Defects in other aspects of ethanol‐induced behaviors might be due to different molecules or mechanisms. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

4.
The effects of ethanol on neural function and development have been studied extensively, motivated in part by the addictive properties of alcohol and the neurodevelopmental deficits that arise in children with fetal alcohol spectrum disorder (FASD). Absent from this research area is a genetically tractable system to study the effects of early ethanol exposure on later neurodevelopmental and behavioral phenotypes. Here, we used embryos of the fruit fly, Drosophila melanogaster, as a model system to investigate the neuronal defects that arise after an early exposure to ethanol. We found several disruptions of neural development and morphology following a brief ethanol exposure during embryogenesis and subsequent changes in larval behavior. Altogether, this study establishes a new system to examine the effects of alcohol exposure in embryos and the potential to conduct large‐scale genetics screens to uncover novel factors that sensitize or protect neurons to the effects of alcohol.  相似文献   

5.
Individual variation in alcohol consumption in human populations is determined by genetic, environmental, social and cultural factors. In contrast to humans, genetic contributions to complex behavioral phenotypes can be readily dissected in Drosophila, where both the genetic background and environment can be controlled and behaviors quantified through simple high‐throughput assays. Here, we measured voluntary consumption of ethanol in ~3000 individuals of each sex from an advanced intercross population derived from 37 lines of the Drosophila melanogaster Genetic Reference Panel. Extreme quantitative trait loci mapping identified 385 differentially segregating allelic variants located in or near 291 genes at P < 10?8. The effects of single nucleotide polymorphisms associated with voluntary ethanol consumption are sex‐specific, as found for other alcohol‐related phenotypes. To assess causality, we used RNA interference knockdown or P{MiET1} mutants and their corresponding controls and functionally validated 86% of candidate genes in at least one sex. We constructed a genetic network comprised of 23 genes along with a separate trio and a pair of connected genes. Gene ontology analyses showed enrichment of developmental genes, including development of the nervous system. Furthermore, a network of human orthologs showed enrichment for signal transduction processes, protein metabolism and developmental processes, including nervous system development. Our results show that the genetic architecture that underlies variation in voluntary ethanol consumption is sexually dimorphic and partially overlaps with genetic factors that control variation in feeding behavior and alcohol sensitivity. This integrative genetic architecture is rooted in evolutionarily conserved features that can be extrapolated to human genetic interaction networks.  相似文献   

6.
Drinking in the dark (DID) is a limited access ethanol‐drinking phenotype in mice. High Drinking in the Dark (HDID‐1) mice have been bred for 27 selected generations (S27) for elevated blood ethanol concentrations (BECs) after a 4‐h period of access to 20% ethanol. A second replicate line (HDID‐2) was started later from the same founder population and is currently in S20. An initial report of response to selection in HDID‐1 was published after S11. This article reports genetic and behavioral characteristics of both lines in comparison with the HS controls. Heritability is low in both replicates (h2 = 0.09) but the lines have shown 4–5 fold increases in BEC since S0; 80% of HDID‐1 and 60% of HDID‐2 mice reach BECs greater than 1.0 mg/ml. Several hours after a DID test, HDID mice show mild signs of withdrawal. Although not considered during selection, intake of ethanol (g/kg) during the DID test increased by approximately 80% in HDID‐1 and 60% in HDID‐2. Common genetic influences were more important than environmental influences in determining the similarity between BEC and intake for HDID mice. Analysis of the partitioning of intake showed that 60% of intake is concentrated in the last 2 h of the 4 h session. However, this has not changed during selection. Hourly BECs during the DID test reach peak levels after 3 or 4 h of drinking. HDID mice do not differ from HS mice in their rate of elimination of an acute dose of alcohol .  相似文献   

7.
Munc13‐1 is a pre‐synaptic active‐zone protein essential for neurotransmitter release and involved in pre‐synaptic plasticity in brain. Ethanol, butanol, and octanol quenched the intrinsic fluorescence of the C1 domain of Munc13‐1 with EC50s of 52 mM, 26 mM, and 0.7 mM, respectively. Photoactive azialcohols photolabeled Munc13‐1 C1 exclusively at Glu‐582, which was identified by mass spectrometry. Mutation of Glu‐582 to alanine, leucine, and histidine reduced the alcohol binding two‐ to five‐fold. Circular dichroism studies suggested that binding of alcohol increased the stability of the wild‐type Munc13‐1 compared with the mutants. If Munc13‐1 plays some role in the neural effects of alcohol in vivo, changes in the activity of this protein should produce differences in the behavioral responses to ethanol. We tested this prediction with a loss‐of‐function mutation in the conserved Dunc‐13 in Drosophila melanogaster. The Dunc‐13P84200/+ heterozygotes have 50% wild‐type levels of Dunc‐13 mRNA and display a very robust increase in ethanol self‐administration. This phenotype is reversed by the expression of the rat Munc13‐1 protein within the Drosophila nervous system. The present studies indicate that Munc13‐1 C1 has binding site(s) for alcohols and Munc13‐1 activity is sufficient to restore normal self‐administration to Drosophila mutants deficient in Dunc‐13 activity.

  相似文献   


8.
Non‐lethal heat‐shock (HS) treatment has previously been shown to induce thermotolerance in soybean (Glycine max cv. Kaohsiung No.8) seedlings. This acquired thermotolerance correlates with the de novo synthesis of heat‐shock proteins (HSPs). Interestingly, we found that ethanol treatments also elicited HS‐like responses in aetiolated soybean seedlings at their normal growth temperature of 28 °C. Northern blot analyses revealed that the expression of HS genes hsp17.5, hsp70 and hsc 70 was induced by ethanol. Radioactive amino acids were preferentially incorporated into high molecular weight (HMW) HSPs rather than class I low molecular weight (LMW) HSPs during non‐lethal ethanol treatments. Immunoblot analysis confirmed that no accumulation of class I LMW HSPs occurred after non‐lethal ethanol treatment. Pre‐treatment with a non‐lethal dose of ethanol did not provide thermotolerance, as the aetiolated soybean seedlings could not survive a subsequent heat shock of 45 °C for 2 h. In contrast, non‐lethal HS pre‐treatment, 40 °C for 2 h, conferred tolerance on aetiolated soybean seedlings to otherwise lethal treatments of 7·5% ethanol for 8 h or 10% ethanol for 4 h. These results suggest that plant class I LMW HSPs may play important roles in providing both thermotolerance and ethanol tolerance.  相似文献   

9.
A growing body of evidence has shown that alcohol alters the activity of the innate immune system and that changes in innate immune system activity can influence alcohol‐related behaviors. Here, we show that the Toll innate immune signaling pathway modulates the level of alcohol resistance in Drosophila. In humans, a low level of response to alcohol is correlated with increased risk of developing an alcohol use disorder. The Toll signaling pathway was originally discovered in, and has been extensively studied in Drosophila. The Toll pathway is a major regulator of innate immunity in Drosophila, and mammalian Toll‐like receptor signaling has been implicated in alcohol responses. Here, we use Drosophila‐specific genetic tools to test eight genes in the Toll signaling pathway for effects on the level of response to ethanol. We show that increasing the activity of the pathway increases ethanol resistance whereas decreasing the pathway activity reduces ethanol resistance. Furthermore, we show that gene products known to be outputs of innate immune signaling are rapidly induced following ethanol exposure. The interaction between the Toll signaling pathway and ethanol is rooted in the natural history of Drosophila melanogaster.  相似文献   

10.
The CRF (corticotropin‐releasing factor) system is a key mediator of the stress response. Alterations in CRF signaling have been implicated in drug craving and ethanol consumption. The development of negative reinforcement via activation of brain stress systems has been proposed as a mechanism that contributes to alcohol dependence. Here, we isolated a gain‐of‐function allele of seb‐3, a CRF receptor‐like GPCR in Caenorhabditis elegans, providing an in vivo model of a constitutively activated stress system. We also characterized a loss‐of‐function allele of seb‐3 and showed that SEB‐3 positively regulates a stress response that leads to an enhanced active state of locomotion, behavioral arousal and tremor. SEB‐3 also contributed to acute tolerance to ethanol and to the development of tremor during ethanol withdrawal. Furthermore, we found that a specific CRF1 receptor antagonist reduced acute functional tolerance to ethanol in mice. These findings demonstrate functional conservation of the CRF system in responses to stress and ethanol in vertebrates and invertebrates.  相似文献   

11.
Small research vessels are often used as platforms for tagging activities to collect behavioral data on cetaceans and they have the potential to disturb that group or individual. If this disturbance is ignored, results and conclusions produced by that study could be inaccurate. Here land‐based behavioral data of migrating humpback whales (Megaptera novaeangliae) (n = 29) were used to determine the effect of close approaches for tagging by research vessels on their diving, movement and surface behaviors. Groups of whales were tagged, using digital recording tags, by small research vessels, as part of a behavioral response study. In groups that were approached for tagging, temporary changes in movement behaviors during close approaches were found, with subsequent recovery to “pre‐approach” levels. In female‐calf groups more long‐term changes in travel speed were found. Results suggest that, although close approaches for tagging by small vessels may cause behavioral changes in humpback whales, this change may be small and temporary. However, in female‐calf groups, the behavioral change may be greater and longer lasting. This study shows that when using small vessels for behavioral research, disturbance, and recovery should be measured to ensure integrity of data used for other analyses.  相似文献   

12.
BACKGROUND: The oral administration of d,l‐methylphenidate (MPH) was designed to encompass the major part of postnatal development in the rat and to evaluate potential chronic effects. METHODS: Wistar Hannover rats were cross‐fostered on postpartum day 0 (day of birth) and were administered MPH at doses of 5, 50, and 100 mg/kg/day (mpkd) on postpartum days 7 to 70. Clinical signs, body weight, food consumption, developmental, behavioral, clinical/anatomic pathology, toxicokinetic, and fertility evaluations were conducted. RESULTS: MPH‐related effects on clinical signs, body weight, and behavior tests were noted. Increased locomotor activity and cage biting/chewing occurred at ≥5 mpkd (females) and ≥50 mpkd (males) and were absent after dosing ceased. Body weight parameters were decreased at ≥50 mpkd and were comparable to controls at 5 weeks' recovery. Open field motor activity tests conducted 2 weeks after dosing ceased revealed decreased peripheral beam breaks at ≥50 mpkd. Passive avoidance tests conducted 3 weeks after dosing ceased indicated decreased females reaching learning criterion at 100 mpkd. This is considered of nominal significance as there were no effects in the water maze test or retention in passive avoidance test. After multiple doses, females exhibited higher exposures than males and exposures were reduced in all groups in comparison to those after a single dose. CONCLUSIONS: These results suggest that MPH can produce enduring behavioral effects in rats. The no‐toxicologic‐effect‐level was 5 mpkd, associated with AUC(0–24 h) racemate values in males and females, respectively, of 101 and 153 ng.h/mL after chronic dosing. Birth Defects Res (Part B) © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Genetic differences in acute behavioral responses to ethanol contribute to the susceptibility to alcohol use disorder and the reduction of anxiety is a commonly reported motive underlying ethanol consumption among alcoholics. Therefore, we studied the genetic variance in anxiolytic‐like responses to ethanol across the BXD recombinant inbred (RI) mouse panel using the light–dark transition model of anxiety. Strain‐mean genetic mapping and a mixed‐model quantitative trait loci (QTL) analysis replicated several previously published QTL for locomotor activity and identified several novel anxiety‐related loci. Significant loci included a chromosome 11 saline anxiety‐like QTL (Salanq1) and a chromosome 12 locus (Etanq1) influencing the anxiolytic‐like response to ethanol. Etanq1 was successfully validated by studies with BXD advanced intercross strains and fine‐mapped to a region comprising less than 3.5 Mb. Through integration of genome‐wide mRNA expression profiles of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens and ventral midbrain) across the BXD RI panel, we identified high priority candidate genes within Etanq1, the strongest of which was Ninein (Nin), a Gsk3β‐interacting protein that is highly expressed in the brain.  相似文献   

14.
Objective: This study assessed the long‐term effects of group behavioral treatment plus individual cognitive behavioral therapy (CBT) and/or fluoxetine in binge eating disorder (BED) patients. Research Methods and Procedures: A total of 116 individuals were randomized to an initial five‐month trial and were followed up over two years. Assessments, including binge frequency, weight, and self‐report measures, were administered at pre‐treatment, post‐treatment, and ~6, 12, 18, and 24 months after initial treatment. Results: Across treatment groups, there was overall improvement over 29 months in binge frequency and in binge abstinence. The odds of binge abstinence 2 years post‐treatment were 1.373 times the odds of binge abstinence immediately post‐treatment. There was no significant change in weight over the two‐year period. Subjects who received individual CBT evidenced lower binge frequency over the two‐year follow‐up period than patients who had not received individual CBT. Similarly, CBT was associated with increased rates of binge abstinence. There were no main effects of treatment assignment on weight over the two‐year follow‐up period. There was a significant advantage for fluoxetine assignment over the two‐year follow‐up period on depressive symptoms. Discussion: The major significance of the study rests in its examination of the long‐term effects of standardized interventions for BED. Our findings provide support for the ideas that short‐term treatment may confer long‐term benefit and that not all treatments are equivalent in the benefits they confer.  相似文献   

15.
Objective: Pre‐pregnancy obesity poses risks to both pregnant women and their infants. This study used a large population‐based data source to examine trends, from 1993 through 2003, in the prevalence of pre‐pregnancy obesity among women who delivered live infants. Research Methods and Procedures: Data from the Pregnancy Risk Assessment Monitoring System in nine states were analyzed for trends in pre‐pregnancy obesity (BMI > 29.0 kg/m2) overall and by maternal demographic and behavioral characteristics. Pre‐pregnancy BMI was calculated from self‐reported weight and height on questionnaires administered after delivery, and demographic characteristics were taken from linked birth certificates. The sample of 66,221 births was weighted to adjust for survey design, non‐coverage, and non‐response, and it is representative of all women delivering a live birth in each particular state. The sampled births represented 18.5% of all births in the United States. Results: Pre‐pregnancy obesity increased 69.3% during the study period, from 13.0% in 1993 to 1994 to 22.0% in 2002 to 2003. The percentage increase ranged from 45% to 105% for individual states. Subgroups of women with the highest prevalence of obesity in 2002 to 2003 were those who were 20 to 29 years of age, black, had three or more children, had a high school education, enrolled in Women, Infants, and Children, or were non‐smokers. However, all subgroups of women examined experienced at least a 43% increase in pre‐pregnancy obesity over this time period. Discussion: The prevalence of pre‐pregnancy obesity is increasing among women in these nine states, and this trend has important implications for all stages of reproductive health care.  相似文献   

16.
17.
Abstract

Cerebellar Purkinje neurons of long‐sleep (LS) mice express a higher sensitivity than do those of short‐sleep (SS) mice to the depressant effects of ethanol in situ, in vitro, and in intraocular cerebellar brain grafts. The ethanol sensitivity of Purkinje neurons is intrinsic to the cerebellum, may be associated with only certain brain areas, and shows a high genetic correlation with the behavioral sensitivity of mice to ethanol‐induced ataxia. Tolerance develops to the depressant effects of ethanol on cerebellar neurons in both lines of mice. However, ethanol‐tolerant LS mice are more sensitive to the electrophysiological effects of ethanol on Purkinje neurons than are ethanol‐tolerant SS mice. In addition, the behavioral sensitivity to this drug probably also involves noncerebellar neurons since neonatally cerebellectomized LS and SS mice retain a different sensitivity to the ataxic effects of ethanol.  相似文献   

18.
Caenorhabditis elegans is an attractive model system for determining the targets of neuroactive compounds. Genetic screens in C. elegans provide a relatively unbiased approach to the identification of genes that are essential for behavioral effects of drugs and neuroactive compounds such as alcohol. Much work in vertebrate systems has identified multiple potential targets of ethanol but which, if any, of those candidates are responsible for the behavioral effects of alcohol is uncertain. Here we provide detailed methodology for a genetic screen for mutants of C. elegans that are resistant to the depressive effects of ethanol on locomotion and for the subsequent behavioral analysis of those mutants. The methods we describe should also be applicable for use in screening for mutants that are resistant or hypersensitive to many neuroactive compounds and for identifying the molecular targets or biochemical pathways mediating drug responses. Published: June 8, 2004.  相似文献   

19.
The NR2B subunit of N‐methyl d ‐aspartate glutamate receptors influences pharmacological properties and confers greater sensitivity to the modulatory effects of ethanol. This study examined behavioral responses to acute ethanol in a conditional knockout mouse model that allowed for a delayed genetic deletion of the NR2B subunit to avoid mouse lethality. Mice lacking the NR2B gene (knockout) were produced by mating NR2B[f/f] mice with CAMKIIa‐driven tTA transgenic mice and the tetO‐CRE transgenic mice. Adult male and female offspring representing each of the resultant genotypes (knockout, CAM, CRE and wildtype mice) were tested for open‐field locomotor activity following acute low‐ and high‐dose ethanol challenge as well as loss of righting reflex. Findings indicate that male and female mice lacking the NR2B subunit exhibited greater overall activity in comparison to other genotypes during the baseline locomotor activity test. NR2B knockout mice exhibited an exaggerated stimulant response to 1.5 g/kg (i.p.) and an exaggerated depressant response to 3.0 g/kg (i.p.) ethanol challenge. In addition, NR2B knockout mice slept longer following a high dose of ethanol (4.0 g/kg, i.p.). To evaluate pharmacokinetics, clearance rates of ethanol (1.5, 4.0 g/kg, i.p.) were measured and showed that female NR2B knockouts had a faster rate of metabolism only at the higher ethanol dose. Western blot analyses confirmed significant reduction in NR2B expression in the forebrain of knockout mice. Collectively, these data indicate that the NR2B subunit of the N‐methyl d ‐aspartate glutamate receptor is involved in regulating low‐dose stimulant effects of ethanol and the depressant/hypnotic effects of ethanol.  相似文献   

20.
Alcohol modulates the highly conserved, voltage‐ and calcium‐activated potassium (BK) channel, which contributes to alcohol‐mediated behaviors in species from worms to humans. Previous studies have shown that the calcium‐sensitive domains, RCK1 and the Ca2+ bowl, are required for ethanol activation of the mammalian BK channel in vitro. In the nematode Caenorhabditis elegans, ethanol activates the BK channel in vivo, and deletion of the worm BK channel, SLO‐1, confers strong resistance to intoxication. To determine if the conserved RCK1 and calcium bowl domains were also critical for intoxication and basal BK channel‐dependent behaviors in C. elegans, we generated transgenic worms that express mutated SLO‐1 channels predicted to have the RCK1, Ca2+ bowl or both domains rendered insensitive to calcium. As expected, mutating these domains inhibited basal function of SLO‐1 in vivo as neck and body curvature of these mutants mimicked that of the BK null mutant. Unexpectedly, however, mutating these domains singly or together in SLO‐1 had no effect on intoxication in C. elegans. Consistent with these behavioral results, we found that ethanol activated the SLO‐1 channel in vitro with or without these domains. By contrast, in agreement with previous in vitro findings, C. elegans harboring a human BK channel with mutated calcium‐sensing domains displayed resistance to intoxication. Thus, for the worm SLO‐1 channel, the putative calcium‐sensitive domains are critical for basal in vivo function but unnecessary for in vivo ethanol action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号