首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Mitotic cells of a diploid strain of Saccharomyces cerevisiae with appropriate markers for the detection of mitotic crossing-over and mitotic gene conversion were irradiated with X-rays. Induction of these recombinational events was strong. After irradiation, cells were incubated in a rich growth medium and samples were removed for studying the possible formation of synaptonemal complexes up to a time when most cells had completed the first post-irradiation cell division. No complexes were found during the entire period of sampling, during which mitotic recombination in G1 (mitotic gene conversion), DNA replication and G2 (mitotic crossing-over) had occurred. These results are interpreted to mean that synaptonemal complexes are not required for mitotic recombination.  相似文献   

2.
Synchronous cultures of V79 Chinese hamster cells were irradiated in G1 with 300 rad of X-rays. Cells were collected for 2-h intervals after synchronization to include the first three post-irradiation divisions and were scored for chromosome aberrations. After the first post-irradiation division, asymmetrical exchanges were distributed according to the Poisson formula and both the asymmetrical exchange frequency and the acentric fragment frequency exhibited significant variations with collection time. Formulae derived from a previous mathematical analysis were used in conjunction with the aberration frequencies observed at the first, second, and third post-irradiation divisions to predict transmission and survival parameters for specific chromosomal aberrations.The probability, 2T, that an acentric fragment will be transmitted to a daughter cell at anaphase was found to be 0.57. The probability, W, that a two-break aberration (asymmetrical exchange) will be transmitted and observed at the next division was 0.56. Finally, the probability, P, that a cell will survive to a subsequent mitosis after losing a single acentric fragment was about 1.0 for one post-irradiation generation but somewhat less for two generations.  相似文献   

3.
The extent of mitotic delay and chromosome aberration induction by X-rays and bleomycin has been compared in normal human foetal fibroblasts at doses giving approximately equal levels of cell killing, assayed as colony-forming ability. Bleomycin induced much less G2 delay and chromosome damage than X-rays. We conclude that the major mechanism of cell killing by bleomycin does not involve chromosome damage but the cells pass through a number of division cycles before dying and a common DNA lesion is involved in G2 delay and chromosome damage.  相似文献   

4.
V79 hamster cells in plateau (extended G1) phase were irradiated with either 250 kV ('hard') X-rays or carbon K characteristic ultrasoft X-rays under conditions minimizing cell overlap. These cells were killed most effectively by the carbon X-rays, by a factor of about 3 relative to hard X-rays, in agreement with our previous findings with cells in exponential growth. Chromosome-type aberrations were measured at 3 fixation times within the first division cycle after irradiation, and an approximately uniform sensitivity to aberration induction was found for both radiations. The combined aberration data show that carbon X-rays are 2 or more times as effective as hard X-rays, depending on dose and/or data fit. Exchange aberrations require recombination between two separate chromosomes, but they are induced efficiently by carbon X-rays with a substantial linear component to the dose-response despite the very short electron tracks (approximately less than 7 nm) that they produce in the cell. This implies either that the participating DNA helices must be lying extremely close together at the time of radiation damage, so that one track can effectively damage both helices, or that only one radiation-damaged chromosome is needed to promote an exchange event.  相似文献   

5.
The key processes of the bacterial cell cycle are controlled and coordinated to match cellular mass growth. We have studied the coordination between replication and cell division by using a temperature-controlled Escherichia coli intR1 strain. In this strain, the initiation time for chromosome replication can be displaced to later (underreplication) or earlier (overreplication) times in the cell cycle. We used underreplication conditions to study the response of cell division to a delayed initiation of replication. The bacteria were grown exponentially at 39°C (normal DNA/mass ratio) and shifted to 38 and 37°C. In the last two cases, new, stable, lower DNA/mass ratios were obtained. The rate of replication elongation was not affected under these conditions. At increasing degrees of underreplication, increasing proportions of the cells became elongated. Cell division took place in the middle in cells of normal size, whereas the longer cells divided at twice that size to produce one daughter cell of normal size and one three times as big. The elongated cells often produced one daughter cell lacking a chromosome; this was always the smallest daughter cells, and it was the size of a normal newborn cell. These results favor a model in which cell division takes place at only distinct cell sizes. Furthermore, the elongated cells had a lower probability of dividing than the cells of normal size, and they often contained more than two nucleoids. This suggests that for cell division to occur, not only must replication and nucleoid partitioning be completed, but also the DNA/mass ratio must be above a certain threshold value. Our data support the ideas that cell division has its own control system and that there is a checkpoint at which cell division may be abolished if previous key cell cycle processes have not run to completion.  相似文献   

6.
It is generally accepted that during fast growth of Escherichia coli, the time (D) between the end of a round of DNA replication and cell division is constant. This concept is not consistent with the fact that average cell mass of a culture is an exponential function of the growth rate, if it is also accepted that average cell mass per origin of DNA replication (Mi) changes with growth rate and negative exponential cell age distribution is taken into account. Data obtained from cell composition analysis of E. coli OV-2 have shown that not only (Mi) but also D varied with growth rate at generation times () between 54 and 30 min. E. coli OV-2 is a thymine auxotroph in which the replication time (C) can be lengthened, without inducing changes in , by growth with limiting amounts of thymine. This property has been used to study the relationship between cell size and division from cell composition measurements during growth with different amounts of thymine. When C increased, average cell mass at the end of a round of DNA replication also increased while D decreased, but only the time lapse (d) between the end of a replication round and cell constriction initiation appeared to be affected because the constriction period remained fairly constant. We propose that the rate at which cells proceed to constriction initiation from the end of replication is regulated by cell mass at this event, big cells having shorter d times than small cells.Abbreviations OD450 and OD630 Optical density at a given wavelength in nm Dedicated to Dr. John Ingraham to honor him for his many contributions to Science  相似文献   

7.
Hydroxyurea (10 mM) arrests the exponential growth of Tetrahymena by blocking DNA replication during S-phase. After removal of the hydroxyurea (HU), they have a long recovery period during which they are active in DNA synthesis. 3H-TdR uptake showed that on completion of the recovery period, the cells divide (recovery division) and enter a cell cycle which lacks G1. The frequency, size and DNA content of the extranuclear chromatin bodies (ECB) formed at this division are all markedly increased (2–4) over the corresponding values obtained from exponential growth phase controls. Microspectrophotometric analysis of macronuclear DNA content (N) coupled with the cytoplasmic dry mass (C) values suggest that specific N to C ratios (N/C) are required for the initiation of DNA replication and fission: during a normal (exponential growth) cell cycle, both N and C double, but asynchronously, so that the N/C of both post-fission-daughter cells and pre-fission cells is identical (standardized to N/C = 1) but late G1 cells have a low N/C. During a 10 hr exposure to HU, the N remains essentially the same whereas the C increases. When the HU is removed, the N increases by 4× and the C continues to increase until just prior to recovery division when it also reaches a value 4× that of the original daughter cells. Thus, the N/C = 1 is re-established. The enlarged ECB formed during recovery division may function to lower the N/C in the daughter cells, which in turn may in some way stimulate immediate DNA replication, thus eliminating G1. The elimination of G1 (and shortening in a few subsequent cell cycles) allows less time for cytoplasmic growth and results in the return of the cells to the generation time and the N and C values observed prior to the HU treatment.  相似文献   

8.
Saccharomyces cerevisiae has been grown with different generation times by alterations in media richness and by altering the flow rate of the limiting nutrient, glucose in a chemostat. Within the generation time range 2.89-approx. 8.0 h the time from the initiation of DNA synthesis to cell division was independent of generation time and was approx. 2 h. Thus the cell cycle of yeast can be divided into an expandable phase from cell division to the initiation of DNA synthesis, the length of which is dependent on growth rate and a constant phase from the initiation of DNA synthesis to cell division which takes a constant time independent of generation time. In cells growing with generation times longer than 8.6 h this constant phase expands somewhat in time. These results are reminiscent of the observation that in the bacterium Escherichia coliB/R the time from initiation of DNA synthesis to cell division is constant except at very slow growth rates.  相似文献   

9.
10.
The predominant cell cycle change induced by X-rays and clastogens in peripheral blood mononuclear cells is the accumulation of cells in the G2 phase of the cell cycle. We show that this accumulation consists of cells that are either delayed or arrested within the G2 phase. Since both X-rays and DNA crosslinking chemicals are known to damage DNA, the G2 phase inhibition caused by these agents is thought to be one of the primary manifestations of (unrepaired) DNA damage. This interpretation is supported by two additional findings. (1) Older individuals have elevated baseline levels of mononuclear blood cells that are delayed and/or arrested in the G2 phase of the cell cycle. This coincides with the increased chromosomal breakage rates reported for older individuals. (2) Irrespective of their age, individuals with inherited genetic instability syndromes (such as Fanconi anemia and Bloom syndrome) exhibit elevated G2 phase cell fractions. We show that the method used to detect such induced or spontaneous cell cycle changes, viz. BrdU-Hoechst flow cytometry, is a rapid and highly sensitive technique for the assessment of genetic cell damage.Dedicated to Professor Ulrich Wolf on the occasion of his 60th birthday  相似文献   

11.
Paramecium cells were selected which received the entire parental macronucleus at fission and thus started the cell cycle with twice the normal post-fission DNA content. During each of the subsequent two cell cycles the cells synthesized approximately as much DNA as did control cells. The amount of excess macronuclear DNA was consequently halved during each cell cycle. The minimum pre-fission DNA content was just larger than the mean post-replication DNA amount, confirming that a similar amount of DNA, approximately equal to the mean post-fission DNA content of the non-selected population, was synthesized in macronuclei, regardless of the post-fission DNA content. These observations confirm a model for DNA content regulation previously devised for Paramecium and are inconsistent with DNA content regulation schemes proposed for other ciliates. The increased DNA content has no effect either on the subsequent total protein content of pre-fission cells, or on the rate of cell growth. This suggests that the rate of cell growth is limited by the size of the cell when the macronuclear gene-dosage is equal to or greater than that in normal cells. The results also suggest that the amount of DNA synthesized within an interfission period is also limited by the size of the cell and is proportional to the cell mass. Paramecium does not require a fixed nucleocy oplasmic ratio as a pre-condition either for cell division, or, by inference, for initiation of DNA synthesis.  相似文献   

12.
SYNOPSIS. Spathidium spathula irradiated with 0 to 55 kr of × rays showed one or more of the following kinds of behavior: (1) Death of an undivided cell (primary death); (2) death of a descendant of an irradiated cell (secondary death); (3) permanent injury including one or more of the following: low daily division rate, excessive macronuclear enlargement, total loss of micronuclei, cytostome replication, heavy pigmentation, and decreased motility; (4) temporary division retardation for 1 to 2 days followed by apparent complete recovery; and (5) no apparent injury. The first 3 kinds of behavior increased with increasing dosage from 15 to 25 to 55 kr. At 6 kr only the last 2 categories were observed. The LD50 for 8 days was 46 kr for both primary and secondary death, or 60 kr for primary death alone. Micronuclear number varied greatly following irradiation in lines showing either permanent or temporary injury. Two different responses occurred: (1) The micronuclear number averaged about twice the normal number of 20 with a large range (0 to 360) 1 day after exposure. The number gradually decreased during the next 2 days; (2) some cells lost all micronuclei following irradiation, the incidence increasing with dose. At 55 kr complete loss of micronuclei occurred in 96% of the surviving lines.  相似文献   

13.
Summary The relationship between the inhibition of repair of radiation-induced DNA damage and the inhibition of recovery from radiation-induced potentially lethal damage (PLD) by hypertonic treatment was compared in 9L/Ro rat brain tumor cells. Fed plateau phase cultures were-irradiated with 1500 rad and then immediately treated for 20 min with a 37° C isotonic (0.15 M) or hypertonic (0.50 M) salt solution. The kinetics of repair of radiation-induced DNA damage as assayed using alkaline filter elution were compared to those of recovery from radiation-induced PLD as assayed by colony formation. Hypertonic treatment of unirradiated cells produced neither DNA damage nor cell kill. Post-irradiation hypertonic treatment inhibited both DNA repair and PLD recovery, while post-irradiation isotonic treatment inhibited neither phenomenon. However, by 2 h after irradiation, the amount of DNA damage remaining after a 20 min hypertonic treatment was equivalent to that remaining after a 20 min isotonic treatment. In contrast, cell survival after hypertonic treatment remained 2 logs lower than after isotonic treatment even at times up to 24 h. These results suggest that the repair of radiation-induced DNA damageper se is not causally related to recovery from radiation-induced PLD. However, the data are consistent with the time of DNA repair as an important parameter in determining cell survival and, therefore, tend to support the hypothesis that imbalances in sets of competing biochemical or metabolic processes determine survival rather than the presence of a single class of unrepaired DNA lesions.  相似文献   

14.
Understanding how the homeostasis of cellular size and composition is accomplished by different organisms is an outstanding challenge in biology. For exponentially growing Escherichia coli cells, it is long known that the size of cells exhibits a strong positive relation with their growth rates in different nutrient conditions. Here, we characterized cell sizes in a set of orthogonal growth limitations. We report that cell size and mass exhibit positive or negative dependences with growth rate depending on the growth limitation applied. In particular, synthesizing large amounts of “useless” proteins led to an inversion of the canonical, positive relation, with slow growing cells enlarged 7‐ to 8‐fold compared to cells growing at similar rates under nutrient limitation. Strikingly, this increase in cell size was accompanied by a 3‐ to 4‐fold increase in cellular DNA content at slow growth, reaching up to an amount equivalent to ~8 chromosomes per cell. Despite drastic changes in cell mass and macromolecular composition, cellular dry mass density remained constant. Our findings reveal an important role of protein synthesis in cell division control.  相似文献   

15.
Bacteria coordinate DNA replication and cell division, ensuring a complete set of genetic material is passed onto the next generation. When bacteria encounter DNA damage, a cell cycle checkpoint is activated by expressing a cell division inhibitor. The prevailing model is that activation of the DNA damage response and protease‐mediated degradation of the inhibitor is sufficient to regulate the checkpoint process. Our recent genome‐wide screens identified the gene ddcA as critical for surviving exposure to DNA damage. Similar to the checkpoint recovery proteases, the DNA damage sensitivity resulting from ddcA deletion depends on the checkpoint enforcement protein YneA. Using several genetic approaches, we show that DdcA function is distinct from the checkpoint recovery process. Deletion of ddcA resulted in sensitivity to yneA overexpression independent of YneA protein levels and stability, further supporting the conclusion that DdcA regulates YneA independent of proteolysis. Using a functional GFP‐YneA fusion we found that DdcA prevents YneA‐dependent cell elongation independent of YneA localization. Together, our results suggest that DdcA acts by helping to set a threshold of YneA required to establish the cell cycle checkpoint, uncovering a new regulatory step controlling activation of the DNA damage checkpoint in Bacillus subtilis.  相似文献   

16.
The genus Piper belongs to the Piperaceae family, and includes species of commercial and medicinal importance. Chemical studies on Piper species resulted in the isolation of several biologically active molecules, including alkaloid amides, such as piplartine. This molecule, isolated from Piper tuberculatum, has significant cytotoxic activity against tumor cell lines, and presents antifungal, anti-platelet aggregation, anxiolytic, and antidepressant effects. In order to understand the biological properties of piplartine, this study investigated the genotoxicity and the induction of apoptosis by piplartine in V79 cells and its mutagenic and recombinogenic potential in Saccharomyces cerevisiae. Piplartine induced dose-dependent cytotoxicity in S. cerevisiae cultures in either stationary—or exponential growth phase. In addition, piplartine was not mutagenic when cells were treated during exponential-growth phase and kept in buffer solution, but it increased the frequencies of point, frameshift, and forward mutations when cells were treated in medium during growth. Piplartine treatment induced DNA strand breaks in V79 cells, as detected by neutral and alkaline comet assay. In cell cycle analysis, piplartine induced G2/M cell cycle arrest, probably as a consequence of the DNA damage induced and repair. Moreover, piplartine treatment induced apoptosis in a dose-dependent manner, as observed by a decrease in mitochondrial membrane potential and an increase in internucleosomal DNA fragmentation. These data suggest that the DNA damage caused by piplartine induces G2/M cell cycle arrest, followed by apoptosis. Moreover, we suggest that cells surviving piplartine-induced DNA damage can accumulate mutations, since this alkaloid was mutagenic and recombinogenic in S. cerevisiae assays.  相似文献   

17.
The effect of post-irradiation growth in complete rich medium on the expression of the reversion to arginine-independence induced by gamma and alpha radiation in a heteroallelic diploid yeast strain (Saccharomyces cerevisiae BZ34) has been studied. During the post-irradiation treatment the reversion frequency increased, reached a peak at about 90 min and decreased thereafter reaching a constant value for treatment periods exceeding 6 h. As determined by the increase in number of budding cells, extensive DNA synthesis took place in cells incubated only in the nutrient medium and not in the omission medium. Hence the observed increase in the reversion frequency is explained on the basis that post-irradiation DNA synthesis is necessary for the expression of gene conversion. The decrease in the reversion frequency for continued treatment with yeast extract, peptone, dextrose (YEPD) is related to the fact that only one daughter of the post-irradiation first cell division is a revertant.The broth effect was not lost when the irradiated cells were first incubated for 90 min in arginine-less medium and then transferred to the broth. Similarly, the broth effect persisted even at doses high enough to induce considerable division delay. These results suggest that the radiation-induced pre-conversional lesions are not susceptible to repair by alternative pathways.  相似文献   

18.
Objectives: Curcumin, a natural compound, is a potent anti‐cancer agent, which inhibits cell division and/or induces cell death. It is believed that normal cells are less sensitive to curcumin than malignant cells; however, the mechanism(s) responsible for curcumin’s effect on normal cells are poorly understood. The aim of this study was to verify the hypothesis that curcumin affects normal cell division by influencing microtubule stability, using mouse oocyte and early embryo model systems. Materials and methods: Maturating mouse oocytes and two‐cell embryos were treated with different concentrations of curcumin (10–50 μm ), and meiotic resumption and mitotic cleavage were analysed. Spindle and chromatin structure were visualized using confocal microscopy. In addition, acetylation and in vitro polymerization of tubulin, in the presence of curcumin, were investigated and the damage to double‐stranded DNA was studied using γH2A.X. CDK1 activity was measured. Results and conclusions: We have shown for the first time, that curcumin, in a dose‐dependent manner, delays and partially inhibits meiotic resumption of oocytes and inhibits meiotic and mitotic divisions by causing disruption of spindle structure and does not induce DNA damage. Our analysis indicated that curcumin affects CDK1 kinase activity but does not directly affect microtubule polymerization and tubulin acetylation. As our study showed that curcumin impairs generative and somatic cell division, its future clinical use or of its derivatives with improved bioavailability after oral administration, should take into consideration the possibility of extensive side‐effects on normal cells.  相似文献   

19.
Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise in the cell without initiating chromosomal instability.  相似文献   

20.
In this paper, we provided evidence that cisplatin is able to form adducts with cellular DNA in Plasmodium falciparum. The DNA sequence specificity of cisplatin adduct formation was determined in trophozoite-enriched P. falciparum cells and this paper represents the first occasion that the sequence specificity of cisplatin DNA damage has been observed in malaria cells. Utilising a sub-telomeric, 692 bp repeat sequence in the P. falciparum genome, we were able to investigate the DNA adducts formed by cisplatin and five analogues. A run of eight consecutive guanines was the most prominent site of DNA damage in the malarial cells. This study suggests that the mechanism of P. falciparum cell death caused by cisplatin involves damage to DNA and hence inhibition of DNA replication and cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号