首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary a)Nitrogen fixation in rice fields. Nitrogen-fixing blue-green algae grow abundantly in tropical regions and are particularly common in paddy fields. Their possible role in the nitrogen accumulation of soil has been studied. The most vigorous nitrogen-fixing blue-green algae have been assessed for use as green manure in rice fields and favorable effects have been reported in India and other countries. b)Nitrogen fixation by algae in water. The planktonic blue-green algae occur abundantly at certain time of the year in sea water and lake water, and some of them are known to be nitrogen fixers. Certain Japanese species of blue-green algae can withstand high temperatures including ten nitrogen-fixing species from hot-spring waters. c)Nitrogen fixation by symbiotic blue-green algae. Certain species of blue-green algae form associations with other organisms such as fungi, liverworts, ferns and seed plants. The relationship between these two organisms is on one occasion commensal and on others symbiotic. Certain symbiotic blue-green algae are provided with the ability to fix the atmospheric nitrogen.  相似文献   

2.
There have been relatively few studies on airborne algae although they are known to have health implications. The aim of this study was to conduct a survey on the distribution of airborne algae within Bukit Jalil in Kuala Lumpur, Malaysia. The sampling sites included a quiet residential area, a busy area with high human movement, a highway with heavy traffic, small roads with low traffic, a golf course, two hilly areas, and the man-made lake, Tasik Komanwel. Soils were also collected from these sites when possible. Results based on cultured samples showed that cyanobacteria were the dominant airborne algae, with a total of eight species identified. The dominant species was Phormidium tenue while other airborne algae found included P. retzii, Nostoc commune, and N. linckia. The sites with high percentage occurrence of airborne algae were near the animal holding facility of the International Medical University and the Light Railway Transit station. Human movement could be an important factor affecting the occurrence of airborne algae. A very low occurrence of airborne algae was recorded at the sites around the lake area. Some of the airborne algae were also found in the soil samples, suggesting that the algae could originate from the soil.  相似文献   

3.
The colonial volvocine algae span the full range of organizational complexity, from four-celled species to multicellular species, and this group of algae is often used for the study of evolution. In recent years, many organelle genomes have been sequenced using the application of next generation sequencing technology; however, only a few organelle genomes have been reported in colonial volvocine algae. In this study, we determined the organelle genomes of Eudorina elegans and Eudorina cylindrica and analysed the organelle genome size, structure and gene content between these volvocine species. This provided useful information to help us understand the composition of colonial volvocine organelle genomes. Based on the chloroplast genome protein-coding genes, we conducted a phylogenomics analysis of the volvocine algae. The result revealed an unexpected phylogenetic relationship, namely, E. elegans is more closely related to Pleodorina starrii than to E. cylindrica. The substitution rate of volvocine algae was then calculated based on organelle genome protein-coding genes; our analysis suggested the possibility that the two Eudorina species may be under similar evolutionary pressure. Lastly, the synteny analysis of the mitochondrial genome showed that gene arrangements and contents are highly conserved in the family Volvocaceae, and the synteny analysis of the chloroplast genome indicated that the genus Eudorina may have experienced genomic changes.  相似文献   

4.
A study has been made of the morphology and fine structure of young and old cells of the apoplastidic alga Glaucocystis nostochinearum Itzigsohn which contains endophytic blue-green algae. Experiments have been described which indicate that the blue-green algae form a symbiotic association with the host algae, acting as ‘chloroplasts’. The findings have been discussed in the light of recent work on this alga, particularly in relation to the vexing question of the taxonomic position of the organism.  相似文献   

5.
Summary

216 species of diatoms have been found epiphytic on common intertidal marine algae from Great Cumbrae Island, Firth of Clyde, Scotland. Green and red algae had larger epiphytic floras than brown algae. Cocconeis spp. (especially C. scutellum var. scutellum) were common and abundant, and the endophytic Navicula endophytica was found in large numbers in fucoid algae. Similar epiphytic floras were observed on Cladophora rupestris, Polysiphonia lanosa, Gigartina stellata, and Palmaria palmata, but that on Enteromorpha intestinalis was quite distinct.  相似文献   

6.
Seasonal changes in the content of alginic acid and fuccidan have been studied in four species of fucus algae from the Barents Sea: Fucus vesiculosus, F. distichus, F. serratus, and Ascophyllum nodosum. These polysaccharides are accumulated in the biomass of the algae during summer and autumn. To ensure complete processing of fucus algae it is recommended that the raw material be harvested within this period.  相似文献   

7.
Three isozymes specifically concerned with the “branching” of linear polyglucosides have been delected in algae. These enzymes were detected using two-dimensional polyacrylamide gel electrophoresis, and were found to be present in blue-green, red and in green algae. Two isozynies were found in Oscillatoria princeps; three enzymes were present in Spirogyra setiformis, and two and three such enzymes were detected in red algae of the Rhodymenia type. The significance of the multiple forms of this branching enzyme was assessed in light of the type of storage poly-glucosides formed by these plants. The “degree of branching” of the storage sugar appeared to be related to the evolutionary status of these algae.  相似文献   

8.
The Parachlorella clade was put forward as a group within the family Chlorellaceae in 2004. Recent molecular analyses have revealed that Dictyosphaerium morphotype algae form several independent lineages within the Parachlorella clade, and new genera and species have been established. In this study, we focus on the diversity of Dictyosphaerium morphotype algae within the Parachlorella clade, based on 42 strains from China. We used combined analyses of morphology and molecular data based on SSU and internal transcribed spacer region (ITS) rDNA sequences to characterize these algae. In addition, the secondary structure of ITS2 was compared to delineate new lineages. Our results revealed high phylogenic diversity of Dictyosphaerium morphotype algae, and we describe five distinct lineages. We examined the morphological features of these five lineages, and morphological differences are difficult to find compared with other Dictyosphaerium morphotype algae. The five distinct lineages were not described as new genera currently. We lastly discuss the taxonomic problems regarding the Dictyosphaerium morphotype within the Parachlorella clade, and possible solutions are considered.  相似文献   

9.
A decrease in salinity and temperature over the past 3000 years has presented the marine algae of the Baltic Sea with very considerable problems in adaptation. The effects of salinity upon a number of Baltic algae have been measured. The results showed cell mortality to be severe in 0, 68 and 102‰, and minimal in 6 and 11‰: there was most variation in tolerance to 34 and 51‰. The salt tolerances of Baltic marine algae have proved more hyposaline than those of British intertidal algae. Water uptake and loss in tissues of Chorda filum and Fucus vesiculosus from Baltic and British populations have been measured in response to salinity changes. The results revealed significant population differences in both live and killed tissues. Receptacle development and oogonial maturation have been observed in Baltic and British F. vesiculosus, and found to differ in seasonality. Some observations were associated with local sea temperatures but differences in the timing of receptacle initiation and in oogonial size were not. Th depauperate thallus, commonly ascribed to the effects of low salinity, was found to be a complicated phenomenon, comprising numerous attributes which are combined differently in different taxa. The morphological differences between Baltic and British marine algae were usually striking.

The marine algae of the Baltic Sea have therefore diverged in a number of ways from their N. Atlantic counterparts. The naturally high variability of these taxa has enabled them to survive the period of increasingly strong selection pressure which followed the Littorina Sea episode. Divergence seems not to have advanced to the point where speciation may be said to have occurred. The Baltic may therefore be contrasted with the much older Mediterranean Sea, which contains a large number of endemic species. Nevertheless, the Baltic is a site of very considerable evolutionary importance.  相似文献   

10.
Planktonic sarcodines (acantharia, radiolaria, and planktonic foraminifera) are oceanic amoeboid protozoa that often harbor a variety of microalgae as intracellular symbionts. The identity and function of these endosymbiotic algae have intrigued and perplexed biologists for more than a century. The most conspicuous and well‐studied symbiotic algae of planktonic foraminifera and radiolaria are dinoflagellates, but a variety of nondinoflagellate taxa have also been reported. Ultrastructural features have been used to characterize some of these nondinoflagellate algae, but rarely has this led to clear taxonomic affiliations. We analyzed the nuclear small subunit ribosomal DNA (srDNA) isolated from the symbionts of the spinose planktonic foraminiferan Globigerinella siphonifera d'Orbigny (=Globigerinella aequilateralis Brady) and a solitary radiolarian (Spongodrymus sp. Haeckel) in order to determine the identity of these symbionts. The small coccoid algae isolated from G. siphonifera correspond to the Type I symbionts described by Faber et al. (1988) . Phylogenetic analysis of the srDNA sequences places these symbionts within the prymnesiophyte (haptophyte) lineage, closer to Prymnesium Conrad than to Phaeocystis Lagerheim. To our knowledge, this is the first confirmed case of a symbiotic prymnesiophyte. In addition, we were able to examine the level of sequence heterogeneity between symbionts isolated from different individuals of a single host species. The three isolates in this study had srDNA sequences that were almost identical, indicating that the three were all of the same species. Very green symbiotic algae were isolated from three solitary radiolaria identified as species of Spongodrymus. The symbiont srDNA sequences from the three individual hosts were identical to each other, again implicating a single species of algae in that symbiotic association. These symbionts are prasinophytes most closely related to the clade containing Tetaselmis convolutae Norris, Hori et Chihara. Tetraselmis convolutae is the algal symbiont of the marine flatworm, Convolutae roscoffensis Graff.  相似文献   

11.
The chloroplasts of euglenophytes and dinoflagellates have been suggested to be the vestiges of endosymbiotic algae acquired during the process of evolution. However, the evolutionary positions of these organisms are still inconclusive, and they have been tentatively classified as both algae and protozoa. A representative gene of the mitochondrial genome, cytochrome oxidase subunit I (coxI), was chosen and sequenced to clarify the phylogenetic positions of four dinoflagellates, two euglenophytes and one apicomplexan protist. This is the first report of mitochondrial DNA sequences for dinoflagellates and euglenophytes. Our COXI tree shows clearly that dinoflagellates are closely linked to apicomplexan parasites but not with algae. Euglenophytes and algae appear to be only remotely related, with euglenophytes sharing a possible evolutionary link with kinetoplastids. The COXI tree is in general agreement with the tree based on the nuclear encoded small subunit of ribosomal RNA (SSU rRNA) genes, but conflicts with that based on plastid genes. These results support the interpretation that chloroplasts present in euglenophytes and dinoflagellates were captured from algae through endosymbioses, while their mitochondria were inherited from the host cell. We suggest that dinoflagellates and euglenophytes were originally heterotrophic protists and that their chloroplasts are remnants of endosymbiotic algae. Received: 24 March 1997 / Accepted: 21 April 1997  相似文献   

12.
Several species of algae have been commercially harvested in New Zealand, mainly for extraction of agar and alginates. In the past, the harvest was comprised mostly of shore-cast plants. There has been more recent interest, however, in harvesting attached plants of Pterocladia spp., Porphyra spp., Gracilaria sordida, Durvillaea spp., Macrocystis pyrifera, and Ecklonia radiata. The ecological effects of harvesting attached algae depend largely on the sizes of plants, the season of removal, the patch size of clearances, and the proximity and identity of mature plants. These have not been well-studied for seaweeds in New Zealand, but population and life history studies indicate that harvesting methods affect the continuity of algal resources, at least on a local scale, and are crucial factors in their management.  相似文献   

13.
The fouling of mooring facilities in Nakhodka Bay, Sea of Japan, has been studied. The main fouling communities have been distinguished dominated by green algae Enteromorpha linza and Ulva fenestrata, brown algae Laminaria japonica and Costaria costata, a hydroid Obelia longissima, a polychaete Pseudopotamilla occelata, cirripede barnacles Balanus crenatus and Semibalanus cariosus, a bivalve mollusk Mytilus trossulus, and an ascidian Halocynthia aurantium. The naturalization of some species-invaders in the fouling of mooring facilities in Nakhodka Bay has been registered, namely hydroids Laomedea flexuosa and Clytia languida, a polychaete Pseudopotamilla occelata, and a bryozoan Bowerbankia gracilis.  相似文献   

14.
Septins are a group of GTP‐binding proteins that are multi‐functional, with a well‐known role in cytokinesis in animals and fungi. Although the functions of septins have been thoroughly studied in opisthokonts (fungi and animals), the function and evolution of plant/algal septins are not as well characterized. Here we describe septin localization and expression in the green algae Nannochloris bacillaris and Marvania geminata. The present data suggest that septins localize at the division site when cytokinesis occurs. In addition, we show that septin homologs may be found only in green algae, but not in other major plant lineages, such as land plants, red algae and glaucophytes. We also found other septin homolog‐possessing organisms among the diatoms, Rhizaria and cryptomonad/haptophyte lineages. Our study reveals the potential role of algal septins in cytokinesis and/or cell elongation, and confirms that septin genes appear to have been lost in the Plantae lineage, except in some green algae.  相似文献   

15.
Abstract Among the brown algae, species of the Fucaceae (Pelvetia, Fucus and Ascophyllum) were found to have a ‘photosynthetic buffering’ system, allowing the algae to carry out oxygen production without a concomitant uptake of inorganic carbon. This system was not found in other brown algae examined (e.g. Halidrys, Laminaria and Desmarestia) nor in 16 examined species of red and green algae. Pelvetia, Fucus and Ascophyllum belong to the littoral algae which are periodically emersed. In the Fucaceae, the meristodermal cells were found to have a special organization of organelles. Towards the outer cell wall there was a prominent layer of mitochondria while the chloroplasts were concentrated towards the inner and side walls. Between the mitochondria and the chloroplasts there was a large number of physodes. This arrangement of organelles was not found in the other brown algae examined nor in red or green algae. The significance of this organization of the mitochondria is discussed in connection with the function of the ‘photosynthetic buffering’ system.  相似文献   

16.
The silica-scaled algae (Synuraceae, Chrysophyceae sensu lato) are compared to other Chrysophyceae, Phaeophyceae and Bacillariophyceae with occasional comparisons to other chlorophyll c-containing algae, scaled protozoa and oomycete fungi. The silica-scaled algae have several unique characters which separate them from the above groups and based upon these differences a new order, Synurales ord. nov., and a new class, Synurophyceae class. nov., are described. The major distinguishing characters of the Synurophyceae class. nov. are: they have chlorophylls a and c1 but lack chlorophyll c2; their flagellar apparatus includes a microtubular root that loops around two parallel flagella and a flagellar root system which occurs in four absolute orientations; the photoreceptor consists of paired flagellar swellings which are not associated with the cell membrane and chloroplast; no eyespot is present; the nuclear envelope is not or is only weakly associated with the chloroplast endoplasmic reticulum. The Synurophyceae class. nov. are about equally distinct from the Chrysophyceae sensu stricto, Phaeophyceae and Bacillariophyceae when the class level characters are compared. Although the Phaeophyceae have a long history of being placed by themselves in the division Phaeophyta, and the Bacillariophyceae and Chrysophyceae have recently been placed alone in the Bacillariophyta and Chrysophyta, respectively, the similarities found among these classes suggest these algae are not so distinct that they require separate divisions. Tentatively, therefore, the Synurophyceae are placed in the division Phaeophyta along with the Bacillariophyceae and Chrysophyceae sensu stricto.  相似文献   

17.
Because of their large sizes and simple shapes, giant‐celled algae have been used to study how the structural and mechanical properties of cell walls influence cell growth. Here we review known relationships between cell wall and cell growth properties that are characteristic of three representative taxa of giant‐celled algae, namely, Valonia ventricosa, internodal cells of characean algae, and Vaucheria frigida. Tip‐growing cells of the genus Vaucheria differ from cells undergoing diffuse growth in V. ventricosa and characean algae in terms of their basic architectures (non‐lamellate vs. multilamellate) and their dependence upon pH and Ca2+ for cell wall extensibility. To further understand the mechanisms controlling cell growth by cell walls, comparative analyses of cell wall structures and/or associated growth modes will be useful. The giant‐celled algae potentially serve as good models for such investigations because of their wide variety of developmental processes and cell shapes exhibited.  相似文献   

18.
Cyanidioschyzon merolae andCyanidium caldarium are representative species among of the most primitive algae, although the two species are distinctly different in various morphological traits. We determined the nucleotide sequence of therbcL gene and a flanking 8-kb region in the plastid genome of each of these algae. In both algae, 12 genes were identified in this region, in an identical order. This gene order is not conserved in the plastid genomes of other species of the kingdom Plantae that have been sequenced to data. An additional unidentified open reading frame was also found in the two algae that we analyzed, which has not been described in any other species of algae includingPorphyra purpurea. Comparison of the amino acid sequences of selected genes also supported the conclusion thatCyanidioschyzon merolae andCyanidium caldarium are closely related and that they are distinct from other rhodophytes. The nucleotide sequence data reported in this paper will appear in the DDBJ, EMBL and GenBank Nucleotide Sequence Databases under the accession numbers D63675 and D63676.  相似文献   

19.

Some algae are known to grow on shellfish shells. Most of these have been reported in aquatic environments. The species specificity for substrate shells varies, and some algae grow only on the shells of a certain species of shellfish, such as Pseudocladophora conchopheria (Cladophorales, Ulvophyceae) on Lunella coreensis (Trochida, Gastropoda). There are very few reports of algae that grow on land snails. In this study, we discovered green algae growing on the shells of six species of door snails (Clausiliidae) from nine localities in Japan. These green algae formed a green mat composed of thalli embedded in the extracellular matrix. The thallus was composed of aggregated oval cells and peripheral branched filaments. The cells possessed a single parietal chloroplast with a pyrenoid surrounded by two starch sheaths and transversed by a thylakoid. Oil droplets in the cell and ring-like structures on the cell wall surface were frequently observed. The 18S rDNA sequences of all shell-attached algae on different clausiliid species from different localities were almost identical and formed a new clade in the family Kornmanniaceae (Ulvales, Ulvophyceae). No other algae forming visible colonies on the clausiliid shell were found. These findings indicate the presence of specificity between the alga and clausiliid shells. Based on the results of morphological observation and molecular phylogenetic analysis, we propose a new genus and new species of shell-attached green alga, Annulotesta cochlephila.

  相似文献   

20.
Macroalgae have been a key ecological component of marine ecosystems since the Proterozoic period and are common fossil forms in Cambrian Burgess Shale-type Lagerstätten. However, in most cases, it is difficult to place these early fossil algae into modern groups because little distinctive morphology is preserved. Here, we describe a new form of macroalgae, Qingjiangthallus cystocarpium gen. & sp. nov., from the Qingjiang biota of South China. The new taxon is represented by 546 specimens remarkably preserved with characteristics that allow a phylogenetic placement into crown groups of red algae. Centimeter-sized thalli resemble members of the extant Rhodymeniophycidae (a subclass of the class Florideophyceae), and hence suggest a florideophycean affinity, which indicates that ahnfeltiophycidaen and rhodymeniophycidaen algae may have diverged at least 518 Ma, accordant with estimations of molecular studies. The presence of possible cystocarps on Qingjiangthallus thalli suggests that evolutionary innovation of a triphasic life cycle in red algae may have occurred no later than the Early Cambrian. The branching patterns and branch width of Qingjiangthallus are consistent with the coarsely dichotomously branched morphogroup, which was previously present in the Ediacaran, Ordovician, and afterward, but absent in the Cambrian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号