首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Self-interaction of an antibody may lead to aggregation, low solubility or high viscosity. Rapid identification of highly developable leads remains challenging, even though progress has been made with the introduction of techniques such as self-interaction chromatography (SIC) and cross-interaction chromatography (CIC). Here, we report a high throughput method to detect antibody clone self-interaction (CSI) using bio-layer interferometry (BLI) technology. Antibodies with strong self-interaction responses in the CSI-BLI assay also show delayed retention times in SIC and CIC. This method allows hundreds of candidates to be screened in a matter of hours with minimal material consumption.  相似文献   

3.
Antibodies are complex macromolecules and their phase behavior as well as interactions within different solvents and precipitants are still not understood. To shed some light into the processes on a molecular dimension, the occurring self‐interactions between antibody molecules were analyzed by means of the osmotic second virial coefficient (B22). The determined B22 follows qualitatively the phenomenological Hofmeister series describing the aggregation probability of antibodies for the various solvent compositions. However, a direct correlation between crystallization probability and B22 in form of a crystallization slot does not seem to be feasible for antibodies since the phase behavior is strongly dependent on their anisotropy. Kinetic parameters have to be taken into account due to the molecular size and complexity of the molecules. This is confirmed by a comparison of experimental data with a theoretical phase diagram. On the other hand the solubility is thermodynamically driven and therefore the B22 could be used to establish a universal solubility line for the monoclonal antibody mAb04c and different solvent compositions by using thermodynamic models. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:438–451, 2015  相似文献   

4.
Human serum albumin (HSA) is the most abundant protein found in blood serum. It carries essential metabolites and many drugs. The glycation of HSA causes abnormal biological effects. Importantly, glycated HSA (GHSA) is of interest as a biomarker for diabetes. Recently, the first HSA structure with bound pyranose (GLC) and open-chain (GLO) glucose at Sudlow site I has been crystallised. We therefore employed molecular dynamics (MD) simulations and ONIOM calculations to study the dynamic nature of two bound glucose in a pre-glycated HSA (pGHSA) and observe how those sugars alter a protein structure comparing to wild type (Apo) and fatty acid-bound HSA (FA). Our analyses show that the overall structural stability of pGHSA is similar to Apo and FA, except Sudlow site II. Having glucose induces large protein flexibility at Sudlow site II. Besides, the presence of glucose causes W214 to reorient resulting in a change in W214 microenvironment. Considering sugars, both sugars are exposed to water, but GLO is more solvent-accessible. ONIOM results show that glucose binding is favoured for HSA (?115.04 kcal/mol) and GLO (?85.10 kcal/mol) is more preferable for Sudlow site I over GLC (?29.94 kcal/mol). GLO can strongly react with K195 and K199, whereas K195 and K199 provide slightly repulsive forces for GLC. This can confirm that an open-chain GLO is more favourable inside a pocket.  相似文献   

5.
Human serum albumin (HSA) is the most prominent protein in blood plasma with important physiological functions. Although copper is an essential metal for all organisms, the massive utilization of copper has led to concerns regarding its potential health impact. To better understand the potential toxicity and toxic mechanisms of Cu2+, it is of vital importance to characterize the interaction of Cu2+ with HSA. The effect of Cu2+ on the structure and function of HSA in vitro were investigated by biophysical methods including fluorescence techniques, circular dichroism (CD), time‐resolved measurements, isothermal titration calorimetry (ITC), molecular simulations and esterase activity assay. Multi‐spectroscopic measurements proved that Cu2+ quenched the intrinsic fluorescence of HSA in a dynamic process accompanied by the formation of complex and alteration of secondary structure. But the Cu2+ had minimal effect on the backbone and secondary structure of HSA at relatively low concentrations. The ITC results indicated Cu2+ interacted with HSA spontaneously through hydrophobic forces with approximately 1 thermodynamic identical binding sites at 298 K. The esterase activity of HSA was inhibited obviously at the concentration of 8 × 10‐5 M. However, molecular simulation showed that Cu2+ mainly interacted with the amino acid residues Asp (451) by the electrostatic force. Thus, we speculated the interaction between Cu2+ and HSA might induce microenvironment of the active site (Arg 410). This study has provided a novel idea to explore the biological toxicity of Cu2+ at the molecular level. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The effects of linoleic acid and bovine serum albumin on hybridoma cell growth and antibody production were investigated. In dish cultivation, linoleic acid on its own promoted cell growth when used at concentrations below 50 mg L–1, but strongly inhibited growth at a concentration of 100 mg L–1 on more. However, linoleic acid bound to bovine serum albumin did not inhibit cell growth, even at a concentration as high as 100 mg L–1. Also, linoleic acid did not affect the specific antibody production rate, with or without bovine serum albumin. In order to elucidate the enhancement of antibody production by bovine serum albumin, fractions were prepared by ultrafiltration (98% molecular weight cut-offs, 50,000 and 17,000) and the effects of the fractionation on antibody production were studied in batch cultivation. The high-molecular-weight fraction (50,000) promoted antibody production whereas the low-molecular-weight fraction (17,000) inhibited it. In continuous cultivation, the high-molecular-weight fraction was also found to enhance antibody production.  相似文献   

7.
人体尿液中血清白蛋白急剧增加会导致肾脏病发生几率增大,利用动态光散射技术(dynamic light scattering,DLS)研究人血清白蛋白有助于推动诊断肾脏病的早期发现。分析了人血清白蛋白的物理模型;利用单模光纤搭建了动态光散射实验系统,并配制了实验所需的人血清白蛋白水溶液;最后使用该系统研究了人血清白蛋白分子的扩散系数在不同蛋白浓度和pH值条件下的扩散系数。实验和分析结果表明库仑力对蛋白质的扩散起主要作用,在等电位点下(pH=5.2)库仑力的影响消失,蛋白质的扩散系数最小;在等电位点测量出扩散系数随浓度的增加而线性减小;在浓度5 mg/mL~40 mg/mL内互扩散系数Dm=D0[1-(0.00194±0.00008)],D0=(6.74±0.01)×10-7cm2/s为外推至零浓度下23℃时蛋白质的扩散系数。这里C为蛋白质浓度,实验测得人血清白蛋白的半径为(3.44±0.01)nm。  相似文献   

8.
The interaction of paclitaxel with human serum albumin (HSA) was studied using fluorescence, resonance light scattering, ultraviolet‐visible, circular dichroism and Fourier transform infrared spectroscopy at pH 7.4. Fluorescence data revealed that the fluorescence quenching of HSA by paclitaxel was a static quenching procedure. Time‐resolved fluorescence data also confirmed the quenching mode, which present a constant decay time of about 5 ns. The binding sites were approximately 1 and the binding constant suggested a weak association (324/M at 298 K), which is helpful for the release of the drug to targeted organs. The thermodynamic parameters, ΔG, ΔH° and ΔS° were calculated as – 1.06 × 104 J/mol, 361 J/mol per K and 9.7 × 104 J/mol respectively at 298 K, suggesting that binding was spontaneous and was driven mainly by hydrophobic interactions. The binding distance between HSA and paclitaxel was determined to be 2.23 nm based on the Förster theory. Analysis of circular dichroism, ultraviolet‐visible, three‐dimensional fluorescence, Fourier transform infrared and resonance light scattering spectra demonstrated that HSA conformation was slightly altered in the presence of paclitaxel and dimension of the individual HSA molecules were larger after interacting with paclitaxel. These results were confirmed by a molecular docking study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Several fluorine- and bromine-containing BHC analogs having the γ-configuration were synthesized.  相似文献   

10.
Monoclonal antibodies from two-dimensional (2-D) crystals when bound to haptenated phospholipid monolayers in physiological conditions and at ambient temperatures. IgG1 forms two crystal phases: a linear strand phase and a high-order hexagonal phase. The relative distribution of these two phases is dependent on temperature, pH, and salt concentration. This dependence is one that is associated with protein intramolecular interactions rather than lipid-lipid or lipid-protein interactions for a number of reasons: 1) Polyclonal antibodies against the hapten DNP do not organize into any crystal structure for any of the experimental conditions used. 2) Slightly denatured IgG (through storage at 4 degrees C, for example) does not readily crystallize and a shift in the temperature dependence for forming the hexagonal phase is observed. 3) There is no pH driven transition in crystallization tendency for IgE anti-DNP but a transition to disorder is observed at above 30 degrees C. No such transition exists for IgG1. Observation of the dynamics of crystal growth shows a clear and marked dependence on pH and temperature that is in accord with the results of long-term incubations. It is found that high pH retards crystal growth very significantly for IgG1 but not for IgE. Also, the crystal growth rate of 4 degrees C-stored IgG1 is greatly reduced over fresh IgG1 (-80 degrees C stored). Furthermore, it is found that the linear phase of IgG1 is an extremely rapidly forming phase but one that is metastable against the hexagonal phase.  相似文献   

11.
Summary We have characterized the effects of serum andN-acetylglucosamine in a glucose-deprived condition on the glycosylation of antibody light chains, as well as the resulting biological properties of those antibodies. We have chosen for our investigation the human hybridoma lines producing monoclonal antibodies reactive to lung adenocarcinoma. Each antibody possess aN-glycosylated carbohydrate chain in the hypervariable region of the light chains. When the cell lines were grown in the absence of glucose, variant light chains with varying molecular masses were found to be secreted. Analysis of these light chains produced in a glucose-deprived condition revealed that the changed molecular-mass of the variant light chains is due to different glycosylation. Addition ofN-acetylglucosamine or fetal calf serum to the glucose-free medium led to the creation of other light chains that exhibit increased antigen binding activity.  相似文献   

12.
Shi XY  Cao H  Ren FL  Xu M 《化学与生物多样性》2007,4(12):2780-2790
The interaction between bovine serum albumin (BSA) and tinidazole (Tindamax; 1) in aqueous solution was investigated in detail by means of UV/VIS and fluorescence spectroscopy, as well as through resonance light-scattering (RLS) spectroscopy. The apparent binding constant and number of binding sites were determined at three different temperatures, as well as the average binding distances between 1 and the nearest amino acid residue(s) of BSA, as analyzed by means of F?rster's theory of non-radiation energy transfer. Compound 1 was found to quench the inner fluorescence of BSA by forming a tight 1:1 aggregate, based on both static quenching and non-radiation energy transfer. The entropy change upon complexation was positive, and the enthalpy change was negative, indicating that the observed spontaneous binding is mainly driven by electrostatic interactions.  相似文献   

13.
Many regulatory proteins are homo‐oligomeric and designing assays that measure self‐assembly will provide novel approaches to study protein allostery and screen for novel small molecule modulators of protein interactions. We present an assay to begin to define the biochemical determinants that regulate dimerization of the cancer‐associated oncoprotein AGR2. A two site‐sandwich microtiter assay (2SMTA) was designed using a DyLight800‐labeled monoclonal antibody that binds to an epitope in AGR2 to screen for synthetic self‐peptides that might regulate dimer stability. Peptides derived from the intrinsically disordered N‐terminal region of AGR2 increase in trans oligomer stability as defined using the 2SMTA assay. A DSS‐crosslinking assay that traps the AGR2 dimer through K95‐K95 adducts confirmed that Δ45‐AGR2 was a more stable dimer using denaturing gel electrophoresis. A titration of wt‐AGR2, Δ45‐AGR2 (more stable dimer), and monomeric AGR2E60A revealed that Δ45‐AGR2 was more active in binding to Reptin than either wt‐AGR2 or the AGR2E60A mutant. Our data have defined a functional role for the AGR2 dimer in the binding to its most well characterized interacting protein, Reptin. The ability to regulate AGR2 oligomerization in trans opens the possibility for developing small molecules that regulate its' biochemical activity as potential cancer therapeutics. The data also highlight the utility of this oligomerization assay to screen chemical libraries for ligands that could regulate AGR2 dimer stability and its' oncogenic potential.  相似文献   

14.
A method and apparatus for automated measurement of the concentration dependence of static light scattering of protein solutions over a broad range of concentrations is described. The gradient of protein concentrations is created by successive dilutions of an initially concentrated solution contained within the scattering measurement cell, which is maintained at constant total volume. The method is validated by measurement of the concentration dependence of light scattering of bovine serum albumin, ovalbumin, and ovomucoid at concentrations up to 130 g/L. The experimentally obtained concentration dependence of scattering obtained from all three proteins is quantitatively consistent with the assumption that no significant self-association occurs over the measured range of concentrations.  相似文献   

15.
《MABS-AUSTIN》2013,5(4):928-942
The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies.

In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains. Binding was analyzed at acidic and neutral pH using surface plasmon resonance (SPR) and biolayer interferometry (BLI).

Furthermore, we transferred the well-accepted, but low throughput SPR-based method for FcRn binding characterization to the BLI-based Octet platform to enable a higher sample throughput allowing the characterization of FcRn binding already during early drug discovery phase. We showed that the BLI-based approach is fit-for-purpose and capable of discriminating between IgG molecules with significant differences in FcRn binding affinities.

Using this high-throughput approach we investigated FcRn binding of 36 IgG molecules that represented all VH/VL region combinations available in the fully human, recombinant antibody library Ylanthia®. Our results clearly showed normal FcRn binding profiles for all samples. Hence, the variations among the framework parts, complementarity-determining region (CDR) 1 and CDR2 of the fragment antigen binding (Fab) domain did not significantly change FcRn binding.  相似文献   

16.
17.
A syngeneic monoclonal idiotypic antibody was prepared by immunizing the sequence peptide of complementary determining region-1 (CDRL-1) of 41S-2-L which is an antibody light chain capable of catalytically decomposing the antigen peptide (gp41 peptide:original antigen) as well as the intact gp41 molecule of HIV-1 envelope. The obtained idiotypic antibody, i41SL1-2, showed a high specificity to the CDRL-1 peptide. The intact i41SL1-2 and its heavy and light chains displayed apparent affinity constants to the CDRL-1 peptide of 3.6 × 109, 2.7 × 107, 1.8 × 106/M, respectively. The i41SL1-2 recognized the artificial molecule CA2, which has a more complex steric conformation than the CDRL-1, while the i41SL1-2 showed very low affinity to the original monoclonal antibody 41S-2 and its light chain 41S-2-L. However, a homologous sequence, EGG-D, with the gp41 peptide was expressed in the complementary determining region-3 (CDRH-3) of the heavy chain of i41SL1-2. Furthermore, the consensus sequence EGG was located at the important position of the CDRH-3 loop of i41SL1-2. Although the sequence of CDRL-1 (16 mer) is quite shorter than that of whole light chain (112 mer), the CDRL-1 could induce the rearrangement of CDRH-3 gene of i41SL1-2 so as to express a homologous sequence with the original antigen.  相似文献   

18.
Macromolecular crowding, a common phenomenon in the cellular environments, can significantly affect the thermodynamic and kinetic properties of proteins. A single-molecule method based on atomic force microscopy (AFM) was used to investigate the effects of macromolecular crowding on the forces required to unfold individual protein molecules. It was found that the mechanical stability of ubiquitin molecules was enhanced by macromolecular crowding from added dextran molecules. The average unfolding force increased from 210 pN in the absence of dextran to 234 pN in the presence of 300 g/L dextran at a pulling speed of 0.25 microm/sec. A theoretical model, accounting for the effects of macromolecular crowding on the native and transition states of the protein molecule by applying the scaled-particle theory, was used to quantitatively explain the crowding-induced increase in the unfolding force. The experimental results and interpretation presented could have wide implications for the many proteins that experience mechanical stresses and perform mechanical functions in the crowded environment of the cell.  相似文献   

19.
Five human human-mouse hybridomas secreting human monoclonal antibodies to rice allergens were established. Antibodies secreted from the hybridomas reacted with 14–16 kDa rice major allergen proteins. Analysis with overlapping peptides synthesized on a multi-pin apparatus revealed a binding sequence of the major rice allergen protein RA17. The antigenic determinant was located in the C-terminus region of the RA17 protein.  相似文献   

20.
Abstract

The interaction between glycated human serum albumin (gHSA) and folic acid (FA) was investigated by various spectroscopic techniques, such as fluorescence, circular dichroism, UV–vis absorption spectroscopy and electrophoretic light scattering technique. These methods characterize the binding properties of an albumin–folic acid system. The binding constants values (Ka) at 300 and 310 K are about 104 M?1. The standard enthalpy change (ΔH) and the standard entropy change (ΔS) were calculated to be ~?20?kJ mol?1 and ~16 J mol?1 K?1, respectively, which indicate characteristic electrostatic interactions between gHSA and folic acid. The CD studies showed that there are no significant conformational changes in the secondary structure of the protein. Moreover, the zeta potential measurements proved that under physiological conditions the gHSA–folic acid complex shows instability. No significant changes in the secondary structure of the protein and reversible drug binding are the desirable effect from pharmacological point of view.

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号