首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
2.
Quantitative evaluation of binding affinity changes upon mutations is crucial for protein engineering and drug design. Machine learning-based methods are gaining increasing momentum in this field. Due to the limited number of experimental data, using a small number of sensitive predictive features is vital to the generalization and robustness of such machine learning methods. Here we introduce a fast and reliable predictor of binding affinity changes upon single point mutation, based on a random forest approach. Our method, iSEE, uses a limited number of interface Structure, Evolution, and Energy-based features for the prediction. iSEE achieves, using only 31 features, a high prediction performance with a Pearson correlation coefficient (PCC) of 0.80 and a root mean square error of 1.41 kcal/mol on a diverse training dataset consisting of 1102 mutations in 57 protein-protein complexes. It competes with existing state-of-the-art methods on two blind test datasets. Predictions for a new dataset of 487 mutations in 56 protein complexes from the recently published SKEMPI 2.0 database reveals that none of the current methods perform well (PCC < 0.42), although their combination does improve the predictions. Feature analysis for iSEE underlines the significance of evolutionary conservations for quantitative prediction of mutation effects. As an application example, we perform a full mutation scanning of the interface residues in the MDM2–p53 complex.  相似文献   

3.
Platelet-activating factor receptor (PAFR) is a member of G-protein coupled receptor (GPCR) superfamily. Understanding the regulation mechanisms of PAFR by its agonists and antagonists at the atomic level is essential for designing PAFR antagonists as drug candidates for treating PAF-mediated diseases. In this study, a 3D model of PAFR was constructed by a hierarchical approach integrating homology modeling, molecular docking and molecular dynamics (MD) simulations. Based on the 3D model, regulation mechanisms of PAFR by agonists and antagonists were investigated via three 8-ns MD simulations on the systems of apo-PAFR, PAFR-PAF and PAFR-GB. The simulations revealed that binding of PAF to PAFR triggers the straightening process of the kinked helix VI, leading to its activated state. In contrast, binding of GB to PAFR locks PAFR in its inactive state.  相似文献   

4.
5.
Visualization of residue positions in protein alignments and mapping onto suitable structural models is an important first step in the interpretation of mutations or polymorphisms in terms of protein function, interaction, and thermodynamic stability. Selecting and highlighting large numbers of residue positions in a protein structure can be time-consuming and tedious with currently available software. Previously, a series of tasks and analyses had to be performed one-by-one to map mutations onto 3D protein structures; STRAP-NT is an extension of STRAP that automates these tasks so that users can quickly and conveniently map mutations onto 3D protein structures. When the structure of the protein of interest is not yet available, a related protein can frequently be found in the structure databases. In this case the alignment of both proteins becomes the crucial part of the analysis. Therefore we embedded these program modules into the Java-based multiple sequence alignment program STRAP-NT. STRAP-NT can simultaneously map an arbitrary number of mutations denoted using either the nucleotide or amino acid sequence. When the designations of the mutations refer to genomic sites, STRAP-NT translates them into the corresponding amino acid positions, taking intron-exon boundaries into account. STRAP-NT tightly integrates a number of current protein structure viewers (currently PYMOL, RASMOL, JMOL, and VMD) with which mutations and polymorphisms can be directly displayed on the 3D protein structure model. STRAP-NT is available at the PDB site and at http://www.charite.de/bioinf/strap/ or http://strapjava.de.  相似文献   

6.
We propose a surface modification procedure to construct DNA arrays for use in surface plasmon resonance (SPR) imaging studies for the highly sensitive detection of a K-ras point mutation, enhanced with hydrogel nanospheres. A homobifunctional alkane dithiol was adsorbed on Au film to obtain the thiol surface, and ethyleneglycol diglycidylether (EGDE) was reacted to insert the ethyleneglycol moiety, which can suppress nonspecific adsorption during SPR analysis. Then streptavidin (SA) was immobilized on EGDE using tosyl chloride activation. Biotinylated DNA ligands were bound to the SA surface via biotin-SA interaction to fabricate DNA arrays. In SPR analysis, the DNA analyte was exposed on the DNA array and hybridized with the immobilized DNA probes. Subsequently, the hydrogel nanospheres conjugated with DNA probes were bound to the DNA analytes in a sandwich configuration. The DNA-carrying nanospheres led to SPR signal enhancement and enabled us to discriminate a K-ras point mutation in the SPR difference image. The application of DNA-carrying hydrogel nanospheres for SPR imaging assays was a promising technique for high throughput and precise detection of point mutations.  相似文献   

7.
8.
The relationship between helical stability and binding affinity was examined for the intrinsically disordered transactivation domain of the myeloblastosis oncoprotein, c-Myb, and its ordered binding partner, KIX. A series of c-Myb mutants was designed to either increase or decrease helical stability without changing the binding interface with KIX. This included a complimentary series of A, G, P, and V mutants at three non-interacting sites. We were able to use the glycine mutants as a reference state and show a strong correlation between binding affinity and helical stability. The intrinsic helicity of c-Myb is 21%, and helicity values of the mutants ranged from 8% to 28%. The c-Myb helix is divided into two conformationally distinct segments. The N-terminal segment, from K291–L301, has an average helicity greater than 60% and the C-terminal segment, from S304–L315, has an average helicity less than 10%. We observed different effects on binding when these two segments were mutated. Mutants in the N-terminal segment that increased helicity had no effect on the binding affinity to KIX, while helix destabilizing glycine and proline mutants reduced binding affinity by more than 1 kcal/mol. Mutants that either increased or decreased helical stability in the C-terminal segment had almost no effect on binding. However, several of the mutants reveal the presence of multiple conformations accessible in the bound state based on changes in enthalpy and linkage analysis of binding free energies. These results may explain the high level of sequence identity (> 90%), even at non-interacting sites, for c-Myb homologues.  相似文献   

9.
Topology has been shown to be an important determinant of many features of protein folding; however, the delineation of sequence effects on folding remains obscure. Furthermore, differentiation between the two influences proves difficult due to their intimate relationship. To investigate the effect of sequence in the absence of significant topological differences, we examined the folding mechanisms of segment B1 peptostreptococcal protein L and segment B1 of streptococcal protein G. These proteins share the same highly symmetrical topology. Despite this symmetry, neither protein folds through a symmetrical transition state. We analyzed the origins of this difference using theoretical models. We found that the strength of the interactions present in the N-terminal hairpin of protein L causes this hairpin to form ahead of the C-terminal hairpin. The difference in chain entropy associated with the formation of the hairpins of protein G proves sufficient to beget initiation of folding at the shorter C-terminal hairpin. Our findings suggest that the mechanism of folding may be understood by examination of the free energy associated with the formation of partially folded microstates.  相似文献   

10.
A revised version of the Conformational Space Annealing (CSA) global optimization method is developed, with three separate measures of structural similarity, in order to overcome the inability of a single distance measure to evaluate multiple-chain protein structures adequately. A second search method, Conformational Family Monte Carlo (CFMC), involving genetic-type moves, Monte Carlo-with-minimization perturbations, and explicit clustering of the population into conformational families, is adapted to treat multiple-chain proteins. These two methods are applied to two oligomeric proteins, the retro-GCN4 leucine zipper and the synthetic domain-swapped dimer. CFMC proves superior to CSA in its search for low-energy representatives of its conformational families, but both methods encounter difficulty in finding the native packing arrangements in the absence of native-like symmetry constraints, even when native monomers are present in the population.  相似文献   

11.
Ras-related protein (Rab-5a) is primarily involved in the regulation of early endosome fusion during endocytosis and takes part in the budding process. During GTP hydrolysis, Rab5a was spotted in the cytoplasmic side of early endosomes in association with the GTP. Previous study suggested that the substitution of alanine with proline at position 30 of Rab5a reduces the GTPase activity around 12-fold, while, with arginine substitution stimulates the intrinsic GTP hydrolysis by 5-fold. Most of the other substitutions at this position show a little or no effect on the GTPase activity. In this paper, structure analysis and molecular dynamics (MD) simulation studies of human Rab5a and its mutants have been extensively carried out. The effect of binding of a non-hydrolyzable GTP analog guanosine-5′-(β, γ)-imidotriphosphate (GppNHp) with Rab5a and its mutants are described. The objective of the current study is to perform a detailed examination of structural flexibility of Rab5a and its mutants p.Ala30Pro and p.Ala30Arg using MD simulations. Our observations suggest that mutant p.Ala30Arg stabilize the protein molecule when bound to GppNHp which offers additional contacts. Despite an in silico approach, this study provides a deep insight into the impact of mutation on the structure, function, stability, and mechanism of binding of GppNHp to the Rab5a at molecular level.  相似文献   

12.
古紫质4(archaerhodopsin 4,aR4)与细菌视紫质(bacteriorhodopsin,bR)同属于盐杆菌科,同源性59%,均为光驱质子泵。其功能是在光照条件下将质子由胞内泵到胞外形成跨膜质子梯度,该梯度差被膜上另外一种蛋白ATP合成酶用于ATP的合成,从而完成光能向生物能的转化。aR4和bR具有相似的光循环过程,但质子传递时序不同,aR4是先从胞内吸收质子再将质子释放到胞外,而bR恰好相反。甲硫氨酸-145是位于bR视黄醛发色团键合区的一个重要残基,对其光循环有着重要的影响,而在aR4中处在相应位置上的苯丙氨酸-146是其视黄醛键合区与bR唯一不相同的残基。因此通过定点突变,采用紫外可见吸收光谱、动力学光谱、质子泵功能检测、低温透射红外光谱等手段对比分析研究M145F和F146M单点突变对bR和aR4光循环造成的影响,有助于深入理解aR4结构与功能的关系。研究结果表明,M145F突变造成了bR光循环L的丢失和质子泵功能的减弱,而F146M突变并未对aR4的光循环造成显著影响,且突变后aR4质子释放时序没有反转,表明该位置上的残基在两个体系中的作用不尽相同。  相似文献   

13.
Cranio-maxillofacial (CMF) surgery operations are associated with rearrangement of facial hard and soft tissues, leading to dramatic changes in facial geometry. Often, correction of the aesthetical patient's appearance is the primary objective of the surgical intervention. Due to the complexity of the facial anatomy and the biomechanical behaviour of soft tissues, the result of the surgical impact cannot always be predicted on the basis of surgeon's intuition and experience alone. Computational modelling of soft tissue outcome using individual tomographic data and consistent numerical simulation of soft tissue mechanics can provide valuable information for surgeons during the planning stage. In this article, we present a general framework for computer-assisted planning of CMF surgery interventions that is based on the reconstruction of patient's anatomy from 3D computer tomography images and finite element analysis of soft tissue deformations. Examples from our clinical case studies that deal with the solution of direct and inverse surgical problems (i.e. soft tissue prediction, inverse implant shape design) demonstrate that the developed approach provides a useful tool for accurate prediction and optimisation of aesthetic surgery outcome.  相似文献   

14.
Protein contacts, inter-residue interactions and side-chain modelling   总被引:1,自引:0,他引:1  
Faure G  Bornot A  de Brevern AG 《Biochimie》2008,90(4):626-639
Three-dimensional structures of proteins are the support of their biological functions. Their folds are stabilized by contacts between residues. Inner protein contacts are generally described through direct atomic contacts, i.e. interactions between side-chain atoms, while contact prediction methods mainly used inter-Calpha distances. In this paper, we have analyzed the protein contacts on a recent high quality non-redundant databank using different criteria. First, we have studied the average number of contacts depending on the distance threshold to define a contact. Preferential contacts between types of amino acids have been highlighted. Detailed analyses have been done concerning the proximity of contacts in the sequence, the size of the proteins and fold classes. The strongest differences have been extracted, highlighting important residues. Then, we studied the influence of five different side-chain conformation prediction methods (SCWRL, IRECS, SCAP, SCATD and SCCOMP) on the distribution of contacts. The prediction rates of these different methods are quite similar. However, using a distance criterion between side chains, the results are quite different, e.g. SCAP predicts 50% more contacts than observed, unlike other methods that predict fewer contacts than observed. Contacts deduced are quite distinct from one method to another with at most 75% contacts in common. Moreover, distributions of amino acid preferential contacts present unexpected behaviours distinct from previously observed in the X-ray structures, especially at the surface of proteins. For instance, the interactions involving Tryptophan greatly decrease.  相似文献   

15.
The architectural DNA-binding protein HMGB1 consists of two tandem HMG-box domains joined by a basic linker to a C-terminal acidic tail, which negatively regulates HMGB1-DNA interactions by binding intramolecularly to the DNA-binding faces of both basic HMG boxes. Here we demonstrate, using NMR chemical-shift mapping at different salt concentrations, that the tail has a higher affinity for the B box and that A box-tail interactions are preferentially disrupted. Previously, we proposed a model in which the boxes are brought together in a collapsed, tail-mediated assembly, which is in dynamic equilibrium with a more extended form. Small-angle X-ray scattering data are consistent with such a dynamic equilibrium between collapsed and extended structures and are best represented by an ensemble. The ensembles contain a significantly higher proportion of collapsed structures when the tail is present. 15N NMR relaxation measurements show that full-length HMGB1 has a significantly lower rate of rotational diffusion than the tail-less protein, consistent with the loss of independent domain motions in an assembled complex. Mapping studies using the paramagnetic spin label MTSL [(1-oxyl-2,2,5,5-tetramethyl-3-pyrrolidin-3-yl)methyl methanethiosulfonate] placed at three locations in the tail confirm our previous findings that the tail binds to both boxes with some degree of specificity. The end of the tail lies further from the body of the protein and is therefore potentially free to interact with other proteins. MTSL labelling at a single site in the A domain (C44) causes detectable relaxation enhancements of B domain residues, suggesting the existence of a “sandwich”-like collapsed structure in which the tail enables the close approach of the basic domains. These intramolecular interactions are presumably important for the dynamic association of HMGB1 with chromatin and provide a mechanism by which protein-protein interactions or posttranslational modifications might regulate the function of the protein at particular sites, or at particular stages in the cell cycle.  相似文献   

16.
In folded proteins, prolyl peptide bonds are usually thought to be either trans or cis because only one of the isomers can be accommodated in the native folded protein. For the N-terminal domain of the gene-3 protein of the filamentous phage fd (N2 domain), Pro161 resides at the tip of a beta hairpin and was found to be cis in the crystal structure of this protein. Here we show that Pro161 exists in both the cis and the trans conformations in the folded form of the N2 domain. We investigated how conformational folding and prolyl isomerization are coupled in the unfolding and refolding of N2 domain. A combination of single-mixing and double-mixing unfolding and refolding experiments showed that, in unfolded N2 domain, 7% of the molecules contain a cis-Pro161 and 93% of the molecules contain a trans-Pro161. During refolding, the fraction of molecules with a cis-Pro161 increases to 85%. This implies that 10.3 kJ mol(-1) of the folding free energy was used to drive this 75-fold change in the Pro161 cis/trans equilibrium constant during folding. The stabilities of the forms with the cis and the trans isomers of Pro161 and their folding kinetics could be determined separately because their conformational folding is much faster than the prolyl isomerization reactions in the native and the unfolded proteins. The energetic coupling between conformational folding and Pro161 isomerization is already fully established in the transition state of folding, and the two isomeric forms are thus truly native forms. The folding kinetics are well described by a four-species box model, in which the N2 molecules with either isomer of Pro161 can fold to the native state and in which cis/trans isomerization occurs in both the unfolded and the folded proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号