首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Orb‐weaving spiders depend upon the sticky capture spirals of webs to retain insects long enough to be captured. However, insects often escape from orb webs before the spiders can attack them. Therefore, the architectures of orb webs likely reflect strong selective pressure to increase retention times of insects. We experimentally increased the mesh width of one side of an orb web while maintaining the original mesh width on the other side as a control, and then tested the effect of this manipulation on the retention times of four different taxa of insects. We found evidence that increased mesh width of Argiope aurantia orb webs resulted in a general reduction in the retention times of insects. However, retention times for different taxa of insects were not predicted by any one specific morphological or flight characteristic. The influence of mesh width on the retention times of insects is very complex, but our results suggest that mesh width can act to selectively favor the capture of certain taxa of insect prey over others. This effect may help to explain both species level differences in web‐building behaviors and variation in the architectures of webs spun by individual spiders on different days.  相似文献   

2.
Wolfgan Nentwig 《Oecologia》1983,58(3):418-420
Summary Experiments with artificial webs show that there is no correlation between prey size and mesh width. The number of prey items per thread increases with mesh width. Spiders with narrow-meshed webs catch more prey, whilst spiders with wide-meshed webs save more spinning material.  相似文献   

3.
Cribellar prey capture threads found in primitive, horizontal orb-webs reflect more light, including ultraviolet wavelengths, than viscous threads found in more derived, vertical orb-webs. Low web visibility and vertical orientation are each thought to increase prey interception and may represent key innovations that contributed to the greater diversity of modern, araneoid orb-weaving spiders. This study compares prey interception rates of cribellate orb-webs constructed by Uloborus glomosus (Uloboridae) with viscous orb-webs constructed by Leucauge venusta (Tetragnathidae) and Micrathena gracilis (Araneidae). We placed sectors of cribellar and viscous threads side by side in frames that were oriented either horizontally or vertically. The webs of both U. glomosus and L. venusta intercepted more prey when vertically oriented. In each orientation L. venusta webs intercepted more insects than did U. glomosus. Although this is consistent with the greater visibility of cribellar threads, the more closely spaced capture spirals of L. venusta may have contributed to this difference. Micrathena gracilis webs intercepted more prey than did U. glomosus webs, although web orientation did not affect the performance of this araneoid species. The stickier and more closely spaced capture spirals of M. gracilis may have enhanced the interception rates of this species and accounted for the greater number of smaller dipterans retained in its webs. The tendency for these slow, weak flight insects to be blown into both horizontal and vertical webs may account for similar interception rates of horizontal and vertical M. gracilis webs. These observations support the enhanced prey interception of vertically oriented orb-webs, but offer only qualified support for the contributions of lower visibility viscous capture threads.  相似文献   

4.
Behavioural and biomaterial coevolution in spider orb webs   总被引:1,自引:0,他引:1  
Mechanical performance of biological structures, such as tendons, byssal threads, muscles, and spider webs, is determined by a complex interplay between material quality (intrinsic material properties, larger scale morphology) and proximate behaviour. Spider orb webs are a system in which fibrous biomaterials—silks—are arranged in a complex design resulting from stereotypical behavioural patterns, to produce effective energy absorbing traps for flying prey. Orb webs show an impressive range of designs, some effective at capturing tiny insects such as midges, others that can occasionally stop even small birds. Here, we test whether material quality and behaviour (web design) co‐evolve to fine‐tune web function. We quantify the intrinsic material properties of the sticky capture silk and radial support threads, as well as their architectural arrangement in webs, across diverse species of orb‐weaving spiders to estimate the maximum potential performance of orb webs as energy absorbing traps. We find a dominant pattern of material and behavioural coevolution where evolutionary shifts to larger body sizes, a common result of fecundity selection in spiders, is repeatedly accompanied by improved web performance because of changes in both silk material and web spinning behaviours. Large spiders produce silk with improved material properties, and also use more silk, to make webs with superior stopping potential. After controlling for spider size, spiders spinning higher quality silk used it more sparsely in webs. This implies that improvements in silk quality enable ‘sparser’ architectural designs, or alternatively that spiders spinning lower quality silk compensate architecturally for the inferior material quality of their silk. In summary, spider silk material properties are fine‐tuned to the architectures of webs across millions of years of diversification, a coevolutionary pattern not yet clearly demonstrated for other important biomaterials such as tendon, mollusc byssal threads, and keratin.  相似文献   

5.
Species-specific differences in prey-capture success of co-existing web-building spiders are derived from complex factors: various web parameters, web placement, and the spider's response to prey. By examining these, this study revealed prey-capture modes of three species of web-building spiders of the genus Cyclosa living in the same habitat. Cyclosa octotuberculata and C. argenteoalba showed a greater prey capture rate than C. sedeculata , though size compositions of prey were similar in all species. Cyclosa octotuberculata spins thick silk with large adhesive droplets, which may contribute to the higher stopping and retention abilities of the web. Cyclosa argenteoalba constructs webs at open sites where prey is abundant, and has webs of dense mesh size, which may result in the high stopping ability of webs. In C. sedeculata , the web is less effective for stopping and retaining prey, probably owing to the thin silk with a small amount of sticky material, and the response to prey is not rapid. It seems that the former two species achieve a similar level of foraging success by using different sets of foraging traits and the third species has the disadvantage in most aspects of foraging.  相似文献   

6.
Recent studies have shown that organisms from the detritus food web subsidize generalist predators in aboveground food webs, but its significance in space and time is largely unknown. Here we report seasonal dynamics of aerial insects from grazing and detritus food webs in both forest and grassland habitats, and show how these patterns influence the dependence of web spiders on the detritus food web. Detrital insects were more abundant in spring, decreased in summer, and then increased slightly in autumn. This pattern was most conspicuous in Nematocera. Due to different seasonal activity patterns of grazing and detrital insects, the proportion of detrital insects was greater in spring and autumn. Detrital insects were relatively more abundant in the forest than in the grassland. Prey captured by web spiders generally reflected seasonal and spatial patterns of aerial insect abundance. In particular, Leucauge spiders reversed their dependence on the two food webs seasonally. Body size of spiders was negatively correlated with the proportion of detrital prey, suggesting that the detrital subsidy is essential for relatively small predators. This size effect probably resulted from interaction of the following two factors: 1) the maximum body size of prey that can be caught increased with spider body size, 2) larger body size classes of aerial insects included a higher proportion of insects from the grazing food web.  相似文献   

7.
The garden cross orb-spider, Araneus diadematus, shows behavioural responses to leg loss and regeneration that are reflected in the geometry of the web's capture spiral. We created a virtual spider robot that mimicked the web construction behaviour of thus handicapped real spiders. We used this approach to test the correctness and consistency of hypotheses about orb web construction. The behaviour of our virtual robot was implemented in a rule-based system supervising behaviour patterns that communicated with the robot's sensors and motors. By building the typical web of a nonhandicapped spider our first model failed and led to new observations on real spiders. We realized that in addition to leg position, leg posture could also be of importance. The implementation of this new hypothesis greatly improved the results of our simulation of a handicapped spider. Now simulated webs, like the real webs of handicapped spiders, had significantly more gaps in successive spiral turns compared with webs of nonhandicapped spiders. Moreover, webs built by the improved virtual spiders intercepted prey as well as the digitized real webs. However, the main factors that affected web interception frequency were prey size, size of capture area and individual variance; having a regenerated leg, surprisingly, was relatively unimportant for this trait. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

8.
The pattern of prey utilization of the orb-weaving spider Araneus pinguis was studies by comparing between arthropods restrained in the empty webs (spiders were removed) and those unattacked in the intact webs (spiders were not removed). The number of arthropods was larger in the empty webs than in the intact webs. In the empty webs, web area, mesh width, number of radii, and signal thread length were presumed to affect the number of arthropods left in a single web. As for the intact webs, web area, mesh width, and web-exposure time were important factors. In the empty webs, the density of arthropods decreased away from the hub. On the other hand, the density of unattacked arthropods in the intact webs was the same throughout the web. Arthropods in the empty webs were larger than those in the intact webs. The upper limit in size of unattacked arthropods increased along with the distance from the hub in the intact webs, but not in the empty webs. These results indicate increase in the minimum size of eaten arthropods increased in the former. This positive sizedistance relation may have resulted from the adaptive switching of spiders’ alternative foraging methods (i.e., the rapid attack at encounter and the later eating during web deconstruction) on the basis of the prey profitability.  相似文献   

9.
Spider orb webs are dynamic, energy absorbing nets whose ability to intercept prey is dependent on both the mechnical properties of web design and the material properties of web silks. Variation in web designs reflects variation in spider web spinning behaviours and variation in web silks reflects variation in spider metabolic processes. Therefore, natural selection may affect web function (or prey capture) through two independent and alternative pathways. In this paper, I examine the ways in which architectural and material properties, singly and in concert, influence the ability of webs to absorb insect impact energy. These findings are evaluated in the context of the evolution of diverse aerial webs. Orb webs range along a continuum from high to low energy absorbing. No single feature of web architecture characterizes the amount of energy webs can absorb, but suites of characters indicate web function. In general, webs that intercept heavy and fast flying prey (high energy absorbing webs) are large, built by large spiders, suspended under high tension and characterized by a ratio of radii to spiral turns per web greater than one. In contrast, webs that intercept light and slow flying prey (low energy absorbing webs) are suspended under low tension, are small and are characterized by radial to spiral turn ratios that are less than one. The data suggest that for spiders building high energy absorbing webs, the orb architecture contributes much to web energy absorption. In contrast, for spiders that build low energy absorbing webs, orb architecture contributes little to enhance web energy absorption. Small or slow flying insects can be intercepted by web silks regardless of web design. Although there exists variation in the material properties of silk collected from high and low energy absorbing webs, only the diameter of web fibres varies predictably with silk energy absorption. Web fibre diameter and hence the amount of energy absorbed by web silks is an isometric function of spider size. The significance of these results lies in the apparent absence of selective advantage of orb architecture to low energy absorbing webs and the evolutionary trend to small spiders that build them. Where high energy absorption is not an exacting feature of web design, web architecture should not be tightly constrained to the orb. Assuming the primitive araneoid web design is the orb web, I propose that the evolution of alternative web building behaviours is a consequence of the general, phyletic trend to small size among araneoids. Araneoids that build webs of other than orb designs are able to use new habitats and resources not available to their ancestors.  相似文献   

10.
Aging is often associated with reduced behavioral performance such as decreased locomotion or food consumption, related to a deterioration in physiological functions. In orb-web spiders, webs are used to capture prey and aging can affect web-building behavior and web structure. Here, we investigated the effect of aging on prey capture in the orb-web spider Zygiella x-notata. The ability of adult females to capture flies was examined at different ages. The rate of prey capture did not change with age, but older spiders took more time to subdue and capture the prey. Alterations which appeared in web structure with age (increase in the number of anomalies affecting radii and capture spiral) affected prey capture behavior. Furthermore, the analysis of individual performance (carried out on 17 spiders at two different ages) showed that older females spent more time handling the prey and finding it in the web. Our results suggest that, in the laboratory, age does not affect prey capture rates but it influences prey capture behavior by affecting web structure or/and spider motor functions.  相似文献   

11.
Some species of web building spiders use different capture tactics for different prey types. The main factors influencing the attack behaviour are the ability of the insect to escape, the risks of injury to the spiders and prey size. This study evaluated the effects of size and prey type on prey capture behaviour of the social spider Anelosimus eximius as influenced by the number of spiders attracted by prey movements that did not bite until the immobilization (bystanders) and the number of spiders that contributed to prey immobilization (catchers). We carried out a two‐factor (prey size and type) experiment offering prey belonging to four orders: Diptera, Lepidoptera, Hymenoptera and Orthoptera, in a size gradient within each prey type. Both factors influenced the number of spiders recruited as bystanders, but only prey body size influenced the number of catchers in the subduing process. The possible advantages of the presence of bystanders around the interception site are discussed.  相似文献   

12.
Spider silk is renowned for its high tensile strength, extensibility and toughness. However, the variability of these material properties has largely been ignored, especially at the intra-specific level. Yet, this variation could help us understand the function of spider webs. It may also point to the mechanisms used by spiders to control their silk production, which could be exploited to expand the potential range of applications for silk. In this study, we focus on variation of silk properties within different regions of cobwebs spun by the common house spider, Achaearanea tepidariorum. The cobweb is composed of supporting threads that function to maintain the web shape and hold spiders and prey, and of sticky gumfooted threads that adhere to insects during prey capture. Overall, structural properties, especially thread diameter, are more variable than intrinsic material properties, which may reflect past directional selection on certain silk performance. Supporting threads are thicker and able to bear higher loads, both before deforming permanently and before breaking, compared with sticky gumfooted threads. This may facilitate the function of supporting threads through sustained periods of time. In contrast, sticky gumfooted threads are more elastic, which may reduce the forces that prey apply to webs and allow them to contact multiple sticky capture threads. Therefore, our study suggests that spiders actively modify silk material properties during spinning in ways that enhance web function.  相似文献   

13.
The selective prey of linyphiid-like spiders and of their space webs   总被引:1,自引:1,他引:0  
Wolfgang Nentwig 《Oecologia》1980,45(2):236-243
Summary 1769 prey animals were collected from the space webs of linyphiid-like spiders, i.e. actual prey, and were compared with more than 110,000 animals from nearby pitfall traps and colored traps (yellow), i.e. potential prey, by means of the Ivlev Index. The catch found in the webs proved to be very selective: certain groups were found in unexpectedly great numbers (especially phytophages insects) while others had nearly always managed to avoid the web (especially predators and pollinating insects). The spider had conducted a further selection in that it consumed only certain animals. The parameters which decide the frequency of capture and of consumption are as follows: flying ability, sense of direction, body type, size, weight and abundance.  相似文献   

14.
Cyclosa spiders attach prey carcasses as decorations to their webs, but the functions of the carcasses are unclear and controversial. We investigated distinctive features of these webs in the field and conducted prey-capture experiments in the lab using the orb-web spider Cyclosa mulmeinensis. Webs with attached decoration had a significantly narrower mesh width than those without decoration and a higher degree of vertical asymmetry in the web’s shape. In the laboratory, webs without decorations trapped significantly more prey, even though other features of the webs were nearly identical. These results suggest that web decorations do not attract prey in this species, but might play other roles such as blinding predators to the spider’s presence.  相似文献   

15.
蛛网结构性能及其适应性   总被引:3,自引:1,他引:2  
卓春晖  蒋平  王昌河  郭聪 《四川动物》2006,25(4):898-902
蛛网是蜘蛛的捕食工具,蛛网的结构性能不仅影响蜘蛛的捕食效率,也关系着蜘蛛的捕食投入。在不同的内外环境条件影响下,蜘蛛会通过蛛网结构性能上的相应变化来调整捕食策略和维持网结构的稳定性。本文主要综述了蛛网的结构性能以及蜘蛛通过蛛网结构性能表现出的对环境因子的适应性。  相似文献   

16.
Abstract Environmental conditions such as light level, background contrast and temperature might influence a spider's prey capture success and risk of predation. Thus it may often be advantageous for spiders to adjust web‐building behaviour in response to variation in these environmental conditions. This hypothesis was examined in a study of the construction of webs and web decorations (conspicuous strands of silk at the hub of the web) of the orb‐web spider Argiope keyserlingi. Web decorations are thought to have one or more separate functions. They may attract prey, deter predators or advertise the web to oncoming birds, thus preventing web damage. In this series of experiments, relationships between weather parameters and the construction of webs and web decorations were considered. In complementary laboratory experiments, A. keyserlingi spiders were exposed to two different light levels (700 and 90 lx), background contrasts (black and white) and temperature conditions (20 and 26°C). Of the available weather parameters, only temperature was significantly related to web decorating behaviour but not to web size. In the laboratory, temperature also influenced web‐decorating behaviour, and spiders in dim light (700 lx) constructed larger webs and longer decorations. Background contrast did not significantly alter web size or web decorations. These data suggest that when prey availability is reduced at low temperatures, spiders may use web decorations to attract prey to the web. Similarly, in dim light, spiders may build more and larger decorations to increase the visual signal to approaching prey or to advertise the web to oncoming birds.  相似文献   

17.
蜘蛛位置对成功捕获猎物和球型网图案的影响   总被引:3,自引:0,他引:3  
静坐在球型网的中心,蜘蛛可能遭受天敌的攻击并暴露在不利的天气条件下,如风和雨。然而,栖居于网的中心使蜘蛛比隐藏在隐蔽场所中的蜘蛛能更迅速地察觉并捕获猎物,这是因为猎物的位置仅能被位于网中心的蜘蛛所确定。对在隐蔽场所中的蜘蛛而言,提高对猎物捕获率的方式之一是尽量减少隐蔽所与网中心的距离。而且,网中心与隐蔽所之间较短的距离使蜘蛛能更迅速地逃离危险境况。我使用既在网中心、又在隐蔽场所的硬类肥蛛(Larinioides sclopetarius Clerck),来检验这两种行为如何影响对猎物的捕获成功率。隐藏在隐蔽场所中的蜘蛛更经常忽略猎物,使猎物也有比较多的逃离机会,这样,与在网中心的蜘蛛相比,猎物的损失率就更高。另外,研究了隐蔽场所的位置对球型网图案的影响。在大多数球型网中,网中心上方的区域比网下方小,丝也比较少,形成了结构不对称的网;隐蔽场所通常在网的上方。当隐蔽场所的位置在实验中被倒转时,就形成了非典型的球型网。最后,L.sclopetarius建造的网有很突出的边缘非对称性,与隐蔽场所相邻的区域面积较小,而远离隐蔽场所的区域面积较大,这也可解释为减少了隐蔽场所和网中心之间的距离[动物学报50(4):559-565.2004]。  相似文献   

18.
Design features of the orb web of the spider, Araneus diadematus   总被引:2,自引:0,他引:2  
Analysis of orb webs of the garden cross spider (Araneus diadematus)showed that these vertical webs have a significant up/down asymmetry.Experiments demonstrated that the spider runs down faster thanup, and thus confers a relatively higher foraging value to sectionsbelow the hub. Simulations suggested that the density of capturespiral spacing, prey size, and the density of prey should allaffect the capture efficiency of a web. Webs lose effectivecapture area because of overlap of the capture zone around eachthread; the smaller the prey, the finer the mesh can be withoutlosing effective area. Lower sectors of the web have a particularmesh size (height and length of capture spiral segments) throughout,whereas in the upper sectors the mesh size changes, wideningfrom the hub towards the periphery.  相似文献   

19.
Portia is a web-invading araneophagic spider that uses aggressive mimicry to deceive its prey. The present paper is a first step toward clarifying experimentally the cues that govern Portia's decisions of whether to enter a web, whether to make signals once in a web, and whether to persist at signalling once started. The following conclusions are supported: cues from seeing a web elicit web entry, but volatile chemical cues from webs of prey spiders are not important; seeing a spider in a web increases Portia's inclination to enter the web; after web entry, cues from webs of prey spiders are sufficient to elicit signalling behaviour, even in the absence of other cues coming directly from the prey spider; seeing a prey spider or detecting vibrations on the web make Portia more prone to signal, but volatile chemical cues from prey spiders are not important; once Portia is on a web and signalling, seeing a moving spider and detecting vibrations on the web encourage Portia to persist in signalling; on the basis of visual cues alone, Portia can distinguish between quiescent spiders, insects and eggsacs.  相似文献   

20.
Zygiella x-notata is an orb-weaving spider that often renews its trap daily. Web building has associated costs and benefits, and building successive webs may have consequences for lifetime reproductive success. In the laboratory, we tested the ability of Z. x-notata to modify its building behaviour in response to various stages in predation (prey detection, capture and ingestion) experienced with a previous web. We determined which stages provided information for the spiders. Spiders that detected, captured and ingested prey and then rebuilt their web used less silk and made a smaller capture area than in the previous web. There was no effect of prey detection alone on the next web. Capture without feeding gave the same results as capture followed by feeding. The spiders that ate prey without detection and capture (feeding by hand) had the same energetic gains as spiders that caught prey but delayed building a new web. The spiders thus showed plasticity in web-building behaviour and in the amount of silk used (energetic investment) in the short term (from one web to the next). Changes in body condition may therefore influence web construction. Moreover, information gained during prey capture appeared to influence the size and structure of the next web. This ability should enable spiders to adapt their web building to maximize their fitness. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号