首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
1. Inorganic [(32)P]phosphate, [U-(14)C]glycerol and [2-(14)C]ethanolamine were injected into the lateral ventricles in the brains of adult rats, and the labelling of individual phospholipids was followed over 2-4 months in both a microsomal and a highly purified myelin fraction. 2. All the phospholipids in myelin became appreciably labelled, although initially the specific radioactivities of the microsomal phospholipids were somewhat higher. Eventually the specific radioactivities in microsomal and myelin phospholipids fell rapidly at a rate corresponding to the decline of radioactivity in the acid-soluble pools. 3. Equivalent experiments carried out in developing rats with [(32)P]phosphate administered at the start of myelination showed some persistence of phospholipid labelling in the myelin, but this could partly be attributed to the greater retention of (32)P in the acid-soluble phosphorus pool and recycling. 4. It is concluded that a substantial part of the phospholipid molecules in adult myelin membranes is readily exchangeable, although a small pool of slowly exchangeable material also exists. 5. A slow incorporation into or loss of labelled precursor from myelin phospholipids does not necessarily give a good indication of the rate of renewal of the molecules in the membrane. As presumably such labelled molecules originate by exchange with those in another membrane site (not necessarily where synthesis occurs) it is only possible to calculate the turnover rate in the myelin membrane if the behaviour of the specific radioactivity with time of the phospholipid molecules in the immediate precursor pool is known.  相似文献   

2.
The synthesis and turnover of cerebrosides and phospholipids was followed in microsomal and myelin fractions of developing and adult rat brains after an intracerebral injection of [U-14C]serine. The kinetics of incorporation of radioactivity into microsomal and myelin cerebrosides indicate the possibility of a precursor-product relationship between cerebrosides of these membranes. The specific radioactivity of myelin cerebrosides was corrected for the deposition of newly formed cerebrosides in myelin. Multiphasic curves were obtained for the decline in specific radioactivity of myelin and microsomal cerebrosides, suggesting different cerebroside pools in these membranes. The half-life of the fast turning-over pool of cerebrosides of myelin was 7 and 22 days for the developing and adult rat brain respectively. The half-life of the slowly turning-over pool of myelin cerebrosides was about 145 days for both groups of animals. The half-life of the rapidly turning-over microsomal cerebrosides was calculated to be 20 and 40 h for the developing and adult animals respectively. The half-life of the intermediate and slowly turning-over microsomal cerebrosides was 11 and 60 days respectively, for both groups of animals. The amount of incorporation of radioactivity into microsomal cerebrosides from L-serine was greatly decreased in the adult animals, and greater amounts of the precursor were directed towards the synthesis of phosphatidylserine. In the developing animals, considerable amounts of cerebrosides were synthesized from L-serine, besides phosphatidylserine. The time-course of incorporation indicated that a precursor-product relationship exists between microsomal and myelin phosphatidylserine. The half-life of microsomal phosphatidylserine was calculated to be about 8 h for the fast turning-over pool in both groups of animals.  相似文献   

3.
Abstract: Awake adult male rats were infused intravenously with [3H]arachidonic acid for 5 min, with or without prior administration of an M1 cholinergic agonist, arecoline (15 mg/kg i.p.). Methylatropine was also administered (4 mg/kg s.c.) to control and arecoline-treated animals. At 15 min postinfusion, the animals were killed, brains were removed and frozen, and subcellular fractions were obtained from homogenates of whole brain. Total radioactivity and radioactivity in various lipid classes were determined for each fraction following normalization for exposure by use of a unidirectional incorporation coefficient, k brain. In control animals, incorporation was greatest in synaptosomal and microsomal fractions, accounting for 50 and 30% of total label incorporated into membrane lipids, respectively. Arecoline increased incorporation in these two fractions by up to 400% but did not increase incorporation into the myelin, mitochondrial, or cytosolic fractions. Of the incorporated radioactivity, 50–80% was in phospholipid in microsomal and synaptosomal fractions, indicating that phospholipid is the major lipid affected by cholinergic stimulation. These results demonstrate that plasma [3H]arachidonic acid is preferentially incorporated into phospholipids of synaptosomal and microsomal fractions of rat brain. Cholinergic stimulation increases incorporation into these fractions, likely by activation of phospholipase A2 and/or C in association with acyltransferase activity. Thus, intravenously infused radiolabeled arachidonic acid can be used to examine synapse-mediated changes in brain phospholipid metabolism in vivo.  相似文献   

4.
Subcellular fractionation of human brain cortex obtained at autopsy yielded microsomal and synaptosome-rich fractions from the gray matter and microsomal and purified myelin fractions from the white matter. The phospholipids of myelin were high in plasmalogens, and the molar ratio of alkenyl acyl sn-glycero-3-phosphorylethanolamine to diacyl sn-glycero-3-phosphorylethanolamine was 4. The acyl groups of the myelin phosphoglycerides were enriched in monoenes (mainly 18:1 and 20:1) and a tetraene, 22:4(n - 6). The phospholipids in the synaptosome-rich fraction were high in diacyl sn-glycero-3-phosphorylcholine, and the molar ratio of the alkenyl acyl sn-glycero-3-phosphorylethanolamine to diacyl sn-glycero-3-phosphorylethanolamine was 0.88. The acyl groups of synaptosomal ethanolamine phosphoglycerides were rich in 22:6(n - 3) but contained a very low amount of 20:1. The lipid composition of microsomes from the gray matter was different from that of microsomes from the white matter but was nearly identical with that of the synaptosome-rich fraction. Except for a slightly lower proportion of alkenyl acyl sn-glycero-3-phosphorylethanolamine and sphingomyelin, the lipid composition of microsomes from the white matter was also similar to that of the myelin. There were also species-related differences between the brain lipid composition of human and subhuman primates and that of the rodents. Furthermore, the brain lipid composition in normal human subjects is rather constant and does not seem to be affected much by individual variations.  相似文献   

5.
Mannose-rich glycopeptides derived from brain glycoproteins were obtained by proteolysis of bovine brain tissue or subcellular fractions derived from rat brain tissue. The dialyzable mannose-rich glycopeptides were isolated by colum electrophoresis and gel flitration. These glycopeptides contained, on the average, six mannose and two N-acetylglucosamine residues with variable amounts of fucose and galactose. Over 50% of the mannose-rich glycopeptides of rat brain were localized in the microsomal and synaptosomal fractions; myelin and the soluble fraction contained lesser amounts. None was recovered from the mitochondria. The amount, per mg protein, of mannose-rich oligosaccharide chains in the myelin exceeded the concentration found in the microsomal and synaptosomal fractions. The concentration of mannose-rich glycopeptides derived from glycoproteins was 50% higher in white matter than in gray. On the other hand, the non-dialyzable and acidic sialoglycopeptides showed a three-fold enrichment in gray matter compared to white. The relatively lower ratio of sialoglycopeptides to mannose-rich glycopeptides observed in white matter (2.5) compared to gray matter (6.9) is reflected in the lower value for the ratio in myelin (1.1) compared to synpatosomes (2.1). Although glycoproteins that contain mannose-rich oligosaccharide chains are present in the nerve cell and its terminals, these glycoproteins appear to be relatively enriched in myelin and/or glial membranes.  相似文献   

6.
Phospholipid exchange activity in developing rat brain   总被引:2,自引:0,他引:2  
Phospholipid exchange activity has been determined in the supernatant fraction of rat brain from birth through to maturity by measuring the protein-catalysed transfer of total and individual 32P-labelled phospholipids from microsomal membranes to mitochondria, and the transfer of [14C]phosphatidylcholine from liposomes to mitochondria. Transfer activity has also been compared in brain and liver supernatant. Overall phospholipid exchange activity in the brain increased only slightly with age. The activity at birth was 75% of the adult value. However, the transfer of individual phospholipids showed markedly different trends during postnatal brain development. The transfer of phosphatidylinositol (PI) and ethanolamine phospholipids increased postnatally to a maximum at 9 days of age, with lowest values in adult brain. Phosphatidylcholine (PC) transfer increased from 9 days to reach maximum values in the mature brain. The transfer of sphingomyelin was highest immediately after birth. PI transfer activity was higher in brain than liver, while PC and ethanolamine phospholipid transfer activity was higher in liver. The heterogeneity of phospholipid exchange proteins in central nervous system tissue is reflected in the developmental changes in exchange activity towards individual phospholipids. The various exchange proteins appear to have separate induction mechanisms. The presence of exchange-protein activity from birth in the rat indicates the functional importance of phospholipid transport during cell acquisition and membrane proliferation. Activity is not primarily associated with membrane formation such as the formation of the myelin sheath, and therefore is more likely to be involved in the process of phospholipid turnover.  相似文献   

7.
[4,5-3H]Docosahexaenoic acid ([3H]DHA) or [9,10-3H]palmitic acid ([3H]PAM) was infused intravenously for 5 min to awake, adult male rats before and after treatment with arecoline (15 mg/kg, i.p.), a cholinergic agonist. Animals were killed 15 min post-infusion, the brains were rapidly removed and subcellular fractions were obtained after sucrose density centrifugation. In control animals, [3H]DHA and [3H]PAM were incorporated into the synaptosomal fractions, representing 50%–60% of total membrane label. Most remaining membrane label (30%–40%) was in the microsomal fraction. Both fractions contained the synaptic marker synaptophysin. The remaining 10% of radioactivity was in the myelin and mitochondrial fractions. Arecoline significantly increased [3H]DHA entry into the synaptosomal fractions by 100% and into the microsomal fraction by 50%. In these fractions 60%–65% of the [3H]DHA was in phospholipid, the rest corresponding to free fatty acid and diacylglycerol. In contrast, arecoline did not change [3H]PAM incorporation into any brain fraction. These results demonstrate that plasma [3H]DHA incorporation is selectively increased into synaptic membrane phospholipids of the rat brain in response to cholinergic activation. The increased incorporation of DHA but not of PAM into synaptic membranes in response to cholinergic stimulation indicates a primary role for DHA in phospholipid mediated signal transduction at the synapse involving activation of phospholipase A2 and/or C.  相似文献   

8.
31P NMR spectra of excised rat brain showed a broad resonance between-12 and -13 ppm. Subcellular fractions of brain, rich in membranes, exhibited the broad resonance and it was also present in isolated myelin, the major membrane component of brain. However, it was absent in brain cytosol (161,100 X g supernatant). Raising the temperature of the brain above 50 degrees C caused a gradual downfield chemical shift of the broad resonance, to about -1 ppm at 90 degrees C. An even larger downfield shift was produced by halothane or deoxycholate with concomitant narrowing of the line width of this resonance. Vesicles prepared from the phospholipids of excised brain or isolated myelin showed the broad resonance, and halothane produced the same downfield shift and peak sharpening in brain phospholipid vesicles as that in the intact brain. The chemical shift anisotropy was estimated to be 45 ppm for both myelin and the brain, as characteristic for biological membranes. The T1 and T2 relaxation times of the perpendicular 31P chemical shift tensor component of the broad resonance were 0.66 sec and 1.6 msec, respectively, in the same range as those for other biological membranes. Halothane-treatment of the brain increased both the T1 and T2 times considerably, as expected from the disruption of the phospholipid bilayer in a membrane. These data indicate that the broad resonance in the 31P NMR spectrum of excised rat brain originates exclusively from the phosphate head group of membrane bound phospholipids. Similar broad resonances were found in autopsied human brain and porcine spinal cord and to a lesser extent in excised rat liver and kidney.  相似文献   

9.
The phospholipid composition was studied in the whole rat retina, as well as in its subcellular fractions. A relative enrichment of phosphatidic acid, phosphatidylethanolamine, and phosphatidylserine was observed in rod outer segments (ROS) in comparison with entire retina: nuclear-photoreceptor inner segmentssynaptic bodies (P1) and synaptosomal-mitochondrial (P2) fractions. Phosphatidylcholine was the predominant phospholipid class found in all subcellular fractions analyzed. The microsomal fraction was relatively enriched in phosphatidic acid and in phosphatidylinositol. In addition, the rat eye has been used as an in vivo system to study membrane lipid synthesis. After intravitreal injections of [2-3H]glycerol a rapid labeling of retinal glycerolipids took place. Up to 120 min after injection only the glycerol backbone of lipids was labeled. Phosphatidic acid and diacylglycerol displayed rapid rates of synthesis and breakdown. Fastest rates of labeling were attained by phosphatidylcholine followed by phosphatidylinositol. Differences were found when in vitro labeling by [2-3H]glycerol was compared with intravitreal injections. Labeling of phospholipids of subcellular fractions by intravitreally injected [2-3H]glycerol showed that most of the label accumulated in microsomal phosphatidylcholine and phosphatidylinositol. Diacylglycerols and phosphatidylethanolamine also took up 10 and 20% respectively of the precursor. It is concluded that the rat eye is a useful experimental model to study synthesis and metabolism of membrane lipids in the retina.  相似文献   

10.
To study lipid breakdown in brain membranes following hemorrhage, synaptosome and myelin fractions isolated from rat brain were incubated with rat serum. After 3 h in vitro at 37 degrees C, 0.43 and 0.26 mumol of fatty acid were released in incubations containing synaptosomes (1.37 mumols phospholipid) or myelin (1.23 mumols phospholipid), respectively, in the presence of 0.25 mL serum. Less than 0.05 mumol of fatty acid was liberated in incubations containing only serum, synaptosomes, or myelin. For synaptosomes and serum, docosahexaenoate was the principal fatty acid released (28 mol% of total) after 3 h of incubation. This fatty acid and arachidonate made up 43 mol% of the liberated fatty acid. The presence of free docosahexaenoate was of interest, as this fatty acid is particularly enriched in phosphatidylserine and phosphatidylethanolamine, phospholipids found in the cytoplasmic half of the synaptosomal plasma membrane and in interior synaptosomal membranes. In incubations of serum and myelin, oleate was the major free fatty acid produced in 30 min to 3 h of incubation (29-35 mol% of total). After 3 h, docosahexaenoate contributed 20 mol% to the total. The release of fatty acids from the membranes may be mediated by serum phospholipase(s) or possibly by activated endogenous lipolytic activities.  相似文献   

11.
The localization and activity of the enzyme UDP-galactose-hydroxy fatty acid-containing ceramide galactosyltransferase is described in rat brain myelin subfractions during development. Other lipid-synthesizing enzymes, such as cerebroside sulphotransferase, UDP-glucose-ceramide glucosyltransferase and CDP-choline-1,2-diacylglycerol cholinephosphotransferase, were also studied for comparison in myelin subfractions and microsomal membranes. The purified myelin was subfractionated by isopycnic sucrose-density-gradient centrifugation. Four myelin subfractions, three floating respectively on 0.55 M- (light-myelin fraction), 0.75 M- (heavy-myelin fraction) and 0.85 M-sucrose (membrane fraction), and a pellet, were isolated and purified. At all ages, 70--75% of the total myelin proteins was found in the heavy-myelin fraction, whereas 2--5% of the protein was recovered in the light-myelin fraction, and about 7--12% in the membrane fraction. Most of the galactosyltransferase was associated with the heavy-myelin and membrane fractions. Other lipid-synthesizing enzymes studied appeared not to associate with purified myelin or myelin subfractions, but were enriched in the microsomal-membrane fraction. During development, the specific activity of the microsomal galactosyltransferase reached a maximum when the animals were about 20 days old and then declined. By contrast the specific activity of the galactosyltransferase in the heavy-myelin and membrane fractions was 3--4 times higher than that of the microsomal membranes in 16-day-old animals. The specific activity of the enzyme in the heavy-myelin fraction sharply declined with age. Chemical and enzymic analyses of the heavy-myelin and membrane myelin subfractions at various ages showed that the membrane fraction contained more proteins in relation to lipids than the heavy-myelin fraction. The membrane fraction was also enriched in phospholipids compared with cholesterol and contrined equivalent amounts of 2':3'-cyclic nucleotide 3'-phosphohydrolase compared with heavy- and light-myelin fractions. The membrane fraction was deficient in myelin basic protein and proteolipid protein and enriched in high-molecular-weight proteins. The specific localization of galactosyltransferase in heavy-myelin and membrane fractions at an early age when myelination is just beginning suggests that it may have some role in the myelination process.  相似文献   

12.
Abstract— The distribution of the soluble, membrane bound and myelin carbonic anhydrase in different regions of the rat CNS was examined as a function of age. A neuraxial progression from spinal cord to upper brain stem was observed for all three enzyme fractions in the 90 day old rat: upper brain stem > lower brain stem and cerebellum > spinal cord. The membrane bound fraction accounted for close to 60% of the total carbonic anhydrase in all regions except the cerebellum where it accounted for only 40%. The developmental pattern of the total membrane bound and soluble fractions were virtually parallel in all regions studied suggesting that they are derived from a common enzyme pool. The myelin enzyme accounts for a small but significant part of the membrane bound fraction and is present at adult levels by 16 days of age indicating it is an early and specific myelin component.  相似文献   

13.
An investigation on the effects of acute (10 mg/kg) and chronic (10 mg/kg for 15 days) treatment with Δ9-THC administration by the intraperitoneal route, on the cholesterol, cerebroside and individual phospholipid contents in microsomal, synaptosomal, mitochodrial and myelin fractions from adult rat brain, is reported. The drug has been found to affect the different subcellular membranous lipid and phospholipid components in a characteristic manner.  相似文献   

14.
Ethanolamine Kinase Activity in Purified Myelin of Rat Brain   总被引:1,自引:1,他引:0  
Highly purified rat brain myelin showed a significant level of ethanolamine kinase, amounting to 17% of the specific activity of whole brain homogenate. This kinase level in myelin was an order of magnitude higher than that of lactate dehydrogenase, a marker for cytosol. Subcellular distribution studies revealed that in addition to myelin, this kinase was present in the P1, P2, P3, and cytosolic fractions with highest relative specific activity in the latter. The possibility that myelin activity resulted from adsorption of the soluble enzyme was unlikely since activity was retained in myelin that had been washed with buffered sodium chloride or taurocholate. Mixing experiments and repeated purification further indicated that the enzyme is intrinsic to myelin. Kinetic studies indicated similar Km values for ethanolamine in the microsomal, cytosolic, and myelin fractions but a significantly lower apparent Km for ATP in myelin. This and other differences suggested the possible existence of isozymes. Establishment of the presence of this kinase completes the list of phospholipid synthesizing enzymes needed to synthesize phosphatidylethanolamine from diacylglycerol within the myelin membrane.  相似文献   

15.
The composition of CNS myelin was investigated in rats adrenalectomized at day 14 and killed 7 days later, previously shown to result in a 25% reduction in the amount of bulk-isolated myelin and a 40% decrease in brain glycerol 3-phosphate dehydrogenase activity. The proportions of the major myelin proteins, as well as the specific activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase, were the same in the myelin from both adrenalectomized and control animals. The amount of total phospholipid and the proportions of individual phospholipids were also normal in myelin from the adrenalectomized animals. The amount of nonmyelin phospholipid in whole brain was unchanged by adrenalectomy. Labeling studies carried out 4 days after adrenalectomy of 14-day-old animals showed no change in the synthesis rates of the major myelin phospholipids as compared with the synthesis rate of nonmyelin phospholipids. Furthermore, incorporation of [1,(3)-14C]glycerol into the glycerol moiety of ethanolamine plasmalogen, which requires glycerol 3-phosphate dehydrogenase, was also normal, showing that the reduced oligodendroglial glycerol 3-phosphate dehydrogenase activity following adrenalectomy was not rate-limiting for myelin phospholipid synthesis.  相似文献   

16.
Until recently, brain phospholipid metabolism was thought to consume only 2% of the ATP consumed by the mammalian brain as a whole. In this paper, however, we calculate that 1.4% of total brain ATP consumption is consumed for the de novo synthesis of ether phospholipids and that another 5% is allocated to the phosphatidylinositide cycle. When added to previous estimates that fatty acid recycling within brain phospholipids and maintenance of membrane lipid asymmetries of acidic phospholipids consume, respectively, 5% and 8% of net brain ATP consumption, it appears that phospholipid metabolism can consume up to 20% of net brain ATP consumption. This new estimate is consistent with recent evidence that phospholipids actively participate in brain signaling and membrane remodeling, among other processes.  相似文献   

17.
The lipolytic activities of mitochondrial and microsomal fractions ('microsomes') isolated from foetal, suckling and adult rat liver were compared. The catabolism of endogenous phospholipids was followed by measuring the loss of phospholipids and the appearance of non-esterified fatty acids and lysophosphatides. The rate of mitochondrial phospholipid catabolism does not change significantly during development, but the rate of lipolysis of microsomal phospholipids increases 3-fold during development. Balance studies showed that, in mitochondria and microsomes of foetal, suckling and adult rat liver, fatty acid formation is greatly in excess of the fatty acids that can be accounted for by measuring phospholipid disappearance and lysophosphatide appearance. The hypothesis that this excess fatty acid formation resulted from the lipolysis of mitochondrial and microsomal triacylglycerols were tested and confirmed by preliminary experiments. Mitochondria and microsomes isolated from all developmental ages investigated had phospholipases with A1 and A2 activities. The degree of unsaturation of the fatty acids derived from the phospholipids of mitochondria did not vary significantly during development.  相似文献   

18.
Phospholipase C was used as a probe for the distribution of phospholipids about the membrane of rough and smooth microsomal fractions from normal and phenobarbital-treated rat liver. All membranes exhibited an asymmetric distribution, with phosphatidylethanolamine and phosphatidylserine concentrated in the inner leaflet of the bilayer and phosphatidylcholine and sphingomyelin concentrated in the outer leaflet. The only phospholipid showing a significant difference in distribution between fractions was phosphatidylcholine, which was shifted towards the outer leaflet in the smooth microsomal fraction compared with the rough microsomal fraction, and towards the outer leaflet in both rough and smooth microsomal fractions from phenobarbital-treated liver compared with the same preparations from untreated rat liver. Apart from this small change, the asymmetric distribution of phospholipids was conserved in microsomal fractions which had proliferated in response to phenobarbital and in which the protein composition had changed.  相似文献   

19.
Abstract: Cellular edema and increased lactate production were induced in rat brain cortical slices by xanthine oxidase and xanthine, in the presence of ferric ions. Lipid peroxidation, as measured by thiobarbituric acid-reactive malon-dialdehyde, was increased 174%. Among the various subcellular fractions of brain cortex, xanthine oxidase-stimulated lipid peroxidation was highest in myelin, mitochondria, and synaptosomes, followed by microsomes and nuclei. Antioxidants, catalase, chlorpromazine, and butylated hydroxytoluene inhibited lipid peroxidation in both homogenates and synaptosomes, indicating H2O2 and radicals were involved. Further, several free fatty acids, especially oleic acid (18:1), arachidonic acid (20:4), and docosahexaenoic acid (22:6) were released from the phospholipid pool concomitant with the degradation of membrane phospholipids in xanthine oxidase-treated synaptosomes. These data suggest that Upases are activated by free radicals and lipid peroxides in the pathogenesis of cellular swelling.  相似文献   

20.
Exchange of phosphatidylinositol and phosphatidylcholine between microsomal and myelin membranes has been demonstrated. This exchange is reversible and catalyzed by soluble proteins from the brain homogenate precipitated at pH 5.1. The extent of exchange of phosphatidylinositol from microsomal membrane to myelin is dependent upon pH and temperature, with an optimum around pH 7 and at 50 degrees C. Maximum exchange was observed at approximately equal amounts of microsomal, myelin, and supernatant proteins. The extent of the catalyzed exchange increases 4- to 8-fold upon using sonicated or heat-treated myelin as an acceptor membrane. Heating of microsomal membranes results in no change. The extent of catalyzed exchange of phosphatidylcholine is less than that of the phosphatidylinositol. The exchange of other phospholipids and glycolipids between microsomal and myelin membranes cannot be demonstrated. The catalytic activity of the pH 5.1 supernatant proteins in rat brain for the exchange of phosphatidylinositol increases with age after birth and reaches a maximum around 21 days of age analogous to the process of myelination. The pH 5.1 supernatant proteins from quaking and jimpy mutant mice has normal catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号