共查询到20条相似文献,搜索用时 46 毫秒
1.
Kim WD Kobayashi O Kaneko S Sakakibara Y Park GG Kusakabe I Tanaka H Kobayashi H 《Phytochemistry》2002,61(6):621-630
The alpha-galactosidase from rice cell suspension cultures was purified to homogeneity by different techniques including affinity chromatography using N-epsilon-aminocaproyl-alpha-D-galactopyranosylamine as the ligand. From 11 l of culture filtrate, 28.7 mg of purified enzyme was obtained with an overall yield of 51.9%. The cDNA coding for the alpha-galactosidase was cloned and sequenced. The enzyme was found to contain 417 amino acid residues composed of a 55 amino acid signal sequence and 362 amino acid mature alpha-galactosidase; the molecular weight of the mature enzyme was thus calculated to be 39,950. Seven cysteine residues were also found but no putative N-glycosylation sites were present. The observed homology between the deduced amino acid sequences of the mature enzyme and alpha-galactosidases from coffee (Coffea arabica), guar (Cyamopsis tetragonolooba), and Mortierella vinacea alpha-galactosidase II were over 73, 72, and 45%, respectively. The enzyme displayed maximum activity at 45 degrees C when p-nitrophenyl-alpha-D-galactopyranoside was used as substrate. The rice alpha-galactosidase and Mortierella vinacea alpha-galactosidase II acted on both the terminal alpha-galactosyl residue and the side-chain alpha-galactosyl residue of the galactomanno-oligosaccharides. 相似文献
2.
3.
4.
5.
NADP-malic enzymes (NADP-ME) are isozymes in plants. To clarify the diversity and function of NADP-ME isozymes in rice, we produced two active GST-fused NADP-ME proteins, NADP-ME2 and NADP-ME3 in Escherichia coli, and the fusion proteins were purified by affinity chromatography using a glutathione-Sepharose 4B column. After enzymatic cleavage of the GST tag, final yields were 1.4 mg/g wet cell weight (wcw) for NADP-ME2 and 3.5 mg/g wcw for NADP-ME3, respectively, and the molecular weights of NADP-ME2 and NADP-ME3 were about 65 and 62 kDa, respectively. The optimum pH is 7.3 for NADP-ME2 and 7.7 for NADP-ME3. The Km values for malate of NADP-ME2 and NADP-ME3 were 2.6 and 3.1 mM, whereas the Km values for NADP were 79 and 93 microM, respectively. The Kcat values of NADP-ME2 and NADP-ME3 for malate were about 91.7 and 96.7 s-1, respectively, and the Kcat values for NADP about 88.3 and 98.3 s-1, respectively. These results suggest that the two rice isozymes of NADP-ME in vitro have similar kinetic parameter. 相似文献
6.
Rice carbonic anhydrase (CA) was successfully expressed as a glutathione-S-transferase (GST) fusion protein in an Escherichia coli expression system. The optimal induction concentration of IPTG and growth temperature was found to be 1.0mM and 28 degrees C. To obtain milligram amounts of homogeneous active recombinant proteins, 150mM NaCl and Mg-ATP solution were used during the purification procedures. After improving the conditions of expression and the purification procedures, final yield of recombinant proteins was 1.3mg/g wet cell weight after enzymatic cleavage of the GST tag, and the molecular weight was about 29kDa. The purified protein had CO(2) hydration activity, and had no detectable esterase activity in vitro. Addition of zinc improved the CO(2) hydration activity of the rice CA produced by E. coli. The effects of acetazolamide (AZ) and the anions N3-, NO3-, I(-), Br(-), and Cl(-) on CO(2) hydration activity of CA were studied. AZ and N3- were found to be strong inhibitors of rice CA. The inhibitory activity of AZ and ions was in the order AZ>N3->NO3->I(-)>Br(-)>Cl(-). 相似文献
7.
8.
To clarify the function of the rice mitochondrial ATP synthase 6 kDa subunit (RMtATP6), a method of producing large quantities of this protein is needed. Here, we describe an Escherichia coli expression system for the rapid and economic expression of RMtATP6. The RMtATP6 gene (GenBank Accession No. ) was cloned into the pGEX-6p-3 vector to allow expression of RMtATP6 as a glutathione S-transferase (GST) fusion protein. The RMtATP6-GST fusion protein was purified by affinity chromatography using a glutathione-Sepharose 4B column. A Western blot analysis using anti-GST antibody showed that the fusion protein was not degraded. After enzymatic cleavage of the GST tail, the RMtATP6 protein showed a molecular weight of around 6 kDa. The predicted pI of this protein is 10.01. After improving the conditions of expression and the purification procedures, the final yield of the entire expression and purification process was about 4.6 mg of pure RMtATP6 protein per liter of bacterial culture. 相似文献
9.
Cloning and characterization of two genes encoding sulfate transporters from rice (Oryza sativa L.)* 总被引:1,自引:0,他引:1
Rosamond M. Godwin Anne L. Rae Bernard J. Carroll Frank W. Smith 《Plant and Soil》2003,257(1):113-123
Two genes were isolated from a rice genomic library and the coding region of their corresponding cDNAs generated by RT-PCR. These single copy genes, designated ORYsa;Sultr1;1 and ORYsa;Sultr4;1, encode putative sulfate transporters. Both genes encode proteins with predicted topologies and signature sequences of the H+/SO42- symporter family of transporters and exhibit a high degree of homology to other plant sulfate transporters. ORYsa;Sultr1;1 is expressed in roots with levels of expression being strongly enhanced by sulfate starvation. In situ hybridization experiments revealed that ORYsa;Sultr1;1 expression is localized to the main absorptive region of roots. This gene probably encodes a transporter that is responsible for uptake of sulfate from the soil solution. In contrast, ORYsa;Sultr4;1 was expressed in both roots and shoots and was unresponsive to the sulfur status of the plant. The sequence of ORYsa;Sultr4;1 contains a possible plastid-targeting transit peptide which may indicate a role in transport of sulfate to sites of sulfate reduction in plastids. The role of the transporter encoded by ORYsa;Sultr4;1 is likely to be significantly different fromORYsa;Sultr1;1. These are the first reports of isolation of genes encoding sulfate transporters from rice and provide a basis for further studies involving sulfate transport. 相似文献
10.
The structural development of glasshouse-grown rice Oryza sativa L. var. Nerica 1 was studied in relation to its stability against lodging. The morphology and mechanical properties of both the stem and roots were examined from tillering, 4 weeks after transplantation up to maturity, together with plant weight distribution and anchorage strength. The "factors of safety" against root and stem failure were subsequently calculated throughout development. Rice plants showed similar morphology to wheat, although they possessed around twice as many tillers per plant and 10 times as many coronal roots. The mechanics of anchorage were also similar. The strength and rigidity of individual tillers increased throughout development as the plants grew taller and heavier and were around 15 times greater than in wheat. By contrast, individual root bending strength, the number of roots, and the anchorage strength levelled off earlier, and anchorage strength was only around twice that in wheat. Consequently, while the self-weight safety factor against stem failure was much higher than in wheat, increasing until late on in development from around 30 to 150, the self-weight safety factor against root anchorage failure was similar to wheat, decreasing from around 15 to 5. Consequently, plants subjected to anchorage tests always failed in their root system rather than their shoot system. The results suggest that, in the field, rice plants would be more likely to undergo root lodging than stem lodging, and that breeding efforts to reduce the incidence of lodging should act to strengthen the rather weak coronal roots. 相似文献
11.
12.
Inheritance of amylose content was studied in crosses involving very low-, intermediate-, and high-amylose parents. The single-grain analysis of parents, F1, F2, B1F1, and B2F1 seed from a single-season harvest, showed that the parental mean difference of 14–17 % in IR37307-8/BPI 121-407 or IR37307-8/IR24632-34 and about 20% in the cross IR37307-8/IR8 were controlled by a single gene with major effect, along with some minor genes and/or modifiers. The appearance of segregants inbetween the two parents was attributed to gene dosage effects in the endosperm. The results indicate that selection for amylose level can effectively be done in early segregating generations. Selection for intermediary segregants would be ineffective because the dosage effects would dissipate in further generations. 相似文献
13.
Park JI Hakozaki H Endo M Takada Y Ito H Uchida M Okabe T Watanabe M 《Plant cell reports》2006,25(5):466-474
In our previous cDNA microarray analysis, we identified 53 mature anther-specific genes, whose function was unknown, in rice.
We reanalyzed these genes from the viewpoint of the specific amino acid motif. Out of 53 genes, three genes, Os-26, Os-32, and Os-169 (renamed as OsSCP1, OsSCP2, and OsSCP3), encoded cysteine-rich motif (Cys-X3-Cys-X13-Cys-X3-Cys), indicating that they were novel small cysteine-rich proteins. From the search of specific elements in promoter regions,
several pollen-specific elements were found. In order to determine whether three promoters were functional in pollen or not,
the gene constructs with promoter regions fused to the β-glucuronidase gene were transformed into tobacco. Histochemical analysis
showed that these promoters were active in the mature pollen grains and pollen tubes. Furthermore, OsSCP1 and OsSCP3 formed a multigene family tandemly in the rice genome. From the results, OsSCPs might have important roles in mature pollen development and pollen tube growth. 相似文献
14.
Wutipraditkul N Boonkomrat S Buaboocha T 《Bioscience, biotechnology, and biochemistry》2011,75(10):1900-1906
Catalase is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. From the cDNA sequences of three rice (Oryza sativa L.) genes that encode for predicted catalases (OsCatA, OsCatB, and OsCatC), complete ORFs were subcloned into pET21a and expressed as (His)(6)-tagged proteins in Escherichia coli. The recombinant (His)(6)-polypeptides were enriched to apparent homogeneity and characterized. With H(2)O(2) as substrate, the highest catalase k(cat) value (20±1.71×10(-3) min(-1)) was found in recombinant OsCatB. The optimum temperatures for catalase activity were 30 °C for OsCatA and OsCatC and 25 °C for OsCatB, while the pH optima were 8.0, 7.5, and 7.0 for OsCatA, OsCatB, and OsCatC respectively. All the catalases were inhibited by sodium azide, β-mercaptoethanol, and potassium cyanide, but only weakly by 3-amino-1,2,4-triazole. The various catalases exhibited different catalase activities in the presence of different salts at different concentrations, OsCatC showing higher salt inhibitory effects than the two other OsCats. 相似文献
15.
Summary Rice plants were grown in sand cultures with nutrient solution including boron at 0, 1, 2.5 and 5 ppm concentrations.In general, supply of boron improved the pollen vitality of rice flowers. It was stimulating up to 2.5 ppm concentration in the nutrient solution, beyond which (i.e., at 5 ppm) inhibitory effects appeared. The availability of boron also increased the yield of rice grains in the same order.Stimulating effects of boron may be linked with greater availability of sugars, increased enzymatic activity and respiration which favoured better growth of pollen. Inhibitory effects of stronger concentration of boron (5 ppm) may be related with physiological depression and injury to protoplasm itself. 相似文献
16.
17.
V. T. Nguyen M. D. Burow H. T. Nguyen B. T. Le T. D. Le A. H. Paterson 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2001,102(6-7):1002-1010
Crop productivity on acid soil is restricted by multiple abiotic stress factors. Aluminum (Al) tolerance seems to be a key
to productivity on soil with a pH below 5.0, but other factors such as Mn toxicity and the deficiency of P, Ca and Mg also
play a role. The development of Al-tolerant genotypes of rice is an urgent necessity for improving crop productivity in developing
countries. Inhibition of root growth is a primary and early symptom of Al toxicity. The present study was conducted to identify
genetic factors controlling the aluminum tolerance of rice. Several parameters related to Al tolerance, most importantly the
relative root growth under Al stress versus non-stress conditions, were scored in 188 F3 selfed families from a cross between an Al-tolerant Vietnamese local variety, Chiembau, and an Al-susceptible improved variety,
Omon269–65. The two varieties are both Oryza sativa ssp. indica, but showed a relatively high level of DNA polymorphism, permitting the assembly of an RFLP map consisting of
164 loci spanning 1,715.8 cM, and covering most of the rice genome. A total of nine different genomic regions on eight chromosomes
have been implicated in the genetic control of root and shoot growth under aluminum stress. By far the greatest effects on
aluminum tolerance were associated with the region near WG110 on chromosome 1. This region does not seem to correspond to
most of the genes that have been mapped for aluminum tolerance in other species, nor do they correspond closely to one another.
Most results, both from physiological studies and from molecular mapping studies, tend to suggest that aluminum tolerance
is a complex multi-genic trait. The identification of DNA markers (such as WG110) that are diagnostic for aluminum tolerance
in particular gene pools provides an important starting point for transferring and pyramiding genes that may contribute to
the sustainable improvement of crop productivity in aluminum-rich soils. The isolation of genes responsible for aluminum tolerance
is likely to be necessary to gain a comprehensive understanding of this complex trait.
Received: 29 March 2000 / Accepted: 16 August 2000 相似文献
18.
The GST (glutathione S-transferase)-NDK (nucleoside diphosphate kinase) fusion protein was expressed in Escherichia coli. The GST-NDK protein was capable of transferring -phosphate from ATP to nucleoside diphosphates such as GDP, CDP, TDP and UDP. Western blot analysis using anti-NDK antibody indicated that NDK in endosperm gradually decreased during 36 h of imbibition. On the contrary, NDK in embryo increased during the same period. NDK activities in both tissues were in accord with these observations. Whereas the NDK protein in roots of rice seedlings during 7 days of imbibition remained constant, in shoots it declined after 5 days of imbibition. Thus, NDK may play a significant role in the cellular event modulated by adenylate energy charge level. 相似文献
19.
Vinod MS Sharma N Manjunath K Kanbar A Prakash NB Shashidhar HE 《Journal of biosciences》2006,31(1):69-74
Candidate genes are sequenced genes of known biological action involved in the development or physiology of a trait. Twenty-one
putative candidate genes were designed after an exhaustive search in the public databases along with an elaborate literature
survey for candidate gene products and/or regulatory sequences associated with enhanced drought resistance. The downloaded
sequences were then used to design primers considering the flanking sequences as well. Polymerase chain reaction (PCR) performed
on 10 diverse cultivars that involvedJaponica, Indica and local accessions, revealed 12 polymorphic candidate genes. Seven polymorphic candidate genes were then utilized to genotype
148 individuals of CT9993 × IR62266 doubled haploid (DH) mapping population. The segregation data were tested for deviation
from the expected Mendelian ratio (1:1) using a Chi-square test (<1%). Based on this, four candidate genes were assessed to
be significant and the remaining three, as non-significant. All the significant candidate genes were biased towards CT9993,
the female parent in the DH mapping population. Single-marker analysis strongly associated (<1%) them to different traits
under both well-watered and low-moisture stress conditions. Two candidate genes,EXP15 andEXP13, were found to be associated with root number and silicon content in the stem respectively, under both well-watered and low-moisture
stress conditions 相似文献
20.