首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphotericin B (AmB) is still the most common anti-fungal agent used to treat systemic fungal infections. It is known that this antibiotic acts by forming pores with the ergosterol contained in the membranes of fungi, but it also interacts with the cholesterol contained in the membranes of eukaryotic cells, hence its toxicity. AmB may also interact with the most common oxidation products of cholesterol found in vivo, together with interacting with biosynthetic precursors of cholesterol, namely, lanosterol and 7-dehydrocholesterol (7-DHC). The purpose of the present work was to study the interactions in solution between AmB and these various sterols, the techniques used being UV-Vis spectroscopy and differential scanning calorimetry. The results are globally interpreted in terms of the structural differences between the sterols. We show that AmB selectively interacts with 7-DHC which, according to a recent hypothesis proposed in the literature, has been identified in connexion with a therapeutic strategy against hepatocellular carcinomas. We find that the affinity of AmB towards 7-DHC is even greater than the affinity of the antibiotic towards ergosterol. We also find that AmB selectively interacts with the principal oxidation product of cholesterol, 7-ketocholesterol, a situation that has to be taken into account when AmB is administered.  相似文献   

2.
Huang W  Zhang Z  Han X  Tang J  Wang J  Dong S  Wang E 《Biophysical journal》2002,83(6):3245-3255
Amphotericin B (AmB) is a popular drug frequently applied in the treatment of systemic fungal infections. In the presence of ruthenium (II) as the maker ion, the behavior of AmB to form ion channels in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes were studied by cyclic votammetry, AC impedance spectroscopy, and UV/visible absorbance spectroscopy. Different concentrations of AmB ranging from a molecularly dispersed to a highly aggregated state of the drug were investigated. In a fixed cholesterol or ergosterol content (5 mol %) in glassy carbon electrode-supported model membranes, our results showed that no matter what form of AmB, monomeric or aggregated, AmB could form ion channels in supported ergosterol-containing phosphatidylcholine bilayer model membranes. However, AmB could not form ion channels in its monomeric form in sterol-free and cholesterol-containing supported model membranes. On the one hand, when AmB is present as an aggregated state, it can form ion channels in cholesterol-containing supported model membranes; on the other hand, only when AmB is present as a relatively highly aggregated state can it form ion channels in sterol-free supported phosphatidylcholine bilayer model membranes. The results showed that the state of AmB played an important role in forming ion channels in sterol-free and cholesterol-containing supported phosphatidylcholine bilayer model membranes.  相似文献   

3.
Amphotericin B (AmB) is a very effective anti-fungal polyene macrolide antibiotic whose usage is limited by its toxicity. Lack of a complete understanding of AmB's molecular mechanism has impeded attempts to design less toxic AmB derivatives. The antibiotic is known to interact with sterols present in the cell membrane to form ion channels that disrupt membrane function. The slightly higher affinity of AmB toward ergosterol (dominant sterol in fungal cells) than cholesterol (mammalian sterol) is regarded as the most essential factor on which antifungal chemotherapy is based. To study these differences at the molecular level, two realistic model membrane channels containing molecules of AmB, sterol (cholesterol or ergosterol), phospholipid, and water were studied by molecular dynamics (MD) simulations. Comparative analysis of the simulation data revealed that the sterol type has noticeable effect on the properties of AmB membrane channels. In addition to having a larger size, the AmB channel in the ergosterol-containing membrane has a more pronounced pattern of intermolecular hydrogen bonds. The interaction between the antibiotic and ergosterol is more specific than between the antibiotic and cholesterol. These observed differences suggest that the channel in the ergosterol-containing membrane is more stable and, due to its larger size, would have a higher ion conductance. These observations are in agreement with experiments.  相似文献   

4.
Complex formation of gramicidin (GA) and desformylgramicidin (des-GA) with sterols was investigated by measuring the intrinsic Trp fluorescence. In organic solvents, the Trp fluorescence of momeric GA was quenched upon binding either cholesterol or ergosterol, but that of monomeric des-GA was not quenched by adding cholesterol. Both dimeric GA and des-GA bound highly to ergosterol, but not to cholesterol, determined by quenching of Trp fluorescence. Furthermore, GA- and des-GA-loaded lysophosphatidylcholine micelles were incubated with phosphatidylcholine vesicles containing cholesterol or ergosterol. The results showed that both monomeric and dimeric peptides hardly bound to cholesterol incorporated into phospholipid vesicles, but markedly bound to ergosterol incorporated into the bilayer membranes. Interestingly, des-GA bound more specifically to the two sterols than GA. In addition, fluorescence resonance energy transfer analysis showed that des-GA bound more specifically to the two sterol than GA.  相似文献   

5.
Amphotericin B (AmB) is a widely used polyene antibiotic to treat systemic fungal infections. This drug is known to be lethal to fungal cells but it has also side effect toxicity on mammalian cells. The mechanism of action of AmB is thought to be related to the difference of the main sterol present in the mammalian and the fungal cells, namely cholesterol and ergosterol, respectively. The effect of AmB has been investigated on pure dipalmitoylphosphatidylcholine (DPPC) and on cholesterol- and ergosterol-containing DPPC bilayers by 2H NMR spectroscopy. The 2H NMR results first confirm that AmB forms a complex with sterol-free DPPC bilayers, the interaction causing the structurization of the lipids and the increase of the gel-to-lamellar fluid DPPC phase transition temperature with increasing concentration of the antibiotic. The results also show that the effects of AmB on cholesterol- and ergosterol-containing DPPC bilayers are remarkably different. On one hand, the drug causes an increase of the orientational order of the lipid acyl chains in cholesterol-containing membranes, mostly in high cholesterol content membranes. On the other hand, the addition of AmB disorders the DPPC acyl chains when ergosterol is present. This is thought to be due to the direct complexation of the ergosterol by AmB, causing the sterol ordering effect to be weaker on the lipids.  相似文献   

6.
The effect of aggregation of amphotericin B (AmB), as well as the complex formation of AmB with cholesterol or ergosterol, was investigated in micelles and vesicles. AmB in lysophosphatidylcholine (LPC) micelles adopted a more favorable monomeric form than that in other drug formulations. At an LPC/AmB ratio of 200, AmB existed only in monomeric form. Such monomeric behavior is likely dependent upon the fluidity and size of the micelles. In LPC micelles composed of 90% monomeric AmB, AmB-ergosterol complex formation occurred with an increase in the sterol concentration, but the complex formation of AmB-cholesterol was slight. On the other hand, in LPC micelles composed of 40% monomeric AmB, the complex formation of AmB-cholesterol as well as AmB-ergosterol was extensive. These results suggest that the complex formation of AmB with both sterols is highly dependent upon the aggregated state of AmB. In addition, using monolayers, mixtures of AmB/LPC/ergosterol were became more stable with rising temperature, while the stability of mixtures of AmB/LPC/cholesterol remained unchanged, implying that complex formation of AmB with cholesterol is different from that of AmB with ergosterol.  相似文献   

7.
The permeability induced by amphotericin B and vacidin A derivatives in large unilamellar lipidic vesicles containing various sterols has been studied using the proton-cation exchange method and 31P-NMR spectroscopy. Derivatives which have a free ionizable carboxyl group induce biphasic ‘all or none’ permeability typical of channel-forming ionophores, whatever the sterol present. In sterol-free membranes, they have no significant activity. Derivatives which lack a free ionizable carboxyl group exhibit this channel-like mode of action only in membranes containing ergosterol or sterols with an alkyl side like that of ergosterol. In membranes containing cholesterol or sterol whose side-chain is alike, a slow and progressive permeability is observed at high concentrations. This activity is observed in sterol-free membranes as well. Derivatives containing sugars with substituted amino groups always have lower ionophoric activity than those which are unsubstituted. The greatest decrease in activity was observed for N-acetyl derivatives. Substitution of the amino groups has no effect on the mode of action. A model of interaction of polyenes with sterols is presented accounting for the data obtained on vesicles and the observed selective toxicity of polyene derivatives in biological membranes.  相似文献   

8.
AmB is an antifungal drug of polyene. Although it is prone to nephrotoxicity, it is still the gold standard in the clinical treatment of fungal infection. Sterol plays a decisive role in the drug activity of AmB. The antifungal activity of AmB depends on ergosterol in fungal membranes, and its toxicity is related to cholesterol in mammalian membranes. At the same time, AmB interacts with biofilms, leading to a significant loss of potassium ions and affecting the transport of potassium ions across membranes. Meanwhile, metal cation may also affect AmB molecules’ aggregation on the membrane. This paper mainly studied the effects of different concentrations of potassium ions on the interactions between AmB and lipid monolayers containing cholesterol or ergosterol and explored the differences in the impact of varying potassium ions on the drug activity of AmB on monolayers rich in these two kinds of sterols. The results show that potassium ions caused the collapse of lipid monolayer and lipid-AmB monolayer to disappear. The limiting molecular area of these monolayers also increased due to potassium ions. The limiting molecular area of the monolayer in the presence of ergosterol has a great difference in the different concentration of potassium ions, which is different from that in the presence of cholesterol. The presence of potassium ions, regardless of the intensity of K+ ions, increased the maximum elastic modulus of the lipid/sterol monolayer with and without AmB. The presence of potassium ions reduced the influence of AmB on the stability of the lipid monolayer containing cholesterol. The impact of AmB on the stability of the lipid monolayer containing ergosterol was related to the concentration of potassium ions. The potassium ions increased the area of the ordered “island” region on the lipid-AmB monolayer containing cholesterol, and the boundary of the microregion produced different degrees of curvature. However, on the lipid/ergosterol monolayer, 5 mM and 10 mM potassium ions made the holes caused by AmB more denser, and the diameter of holes become larger. These results can help to improve the effect of potassium ions on the transmembrane transport of substances affected by AmB. The results will provide a basis for further exploration of the effect mechanism of metal ions on the antifungal activity of polyene drugs.  相似文献   

9.
Natamycin is a polyene macrolide, widely employed to treat fungal keratitis and other yeast infections as well as to protect food products against fungal molds. In contrast to other polyene macrolides, such as nystatin or amphotericin B, natamycin does not form pores in yeast membranes, and its mode of action is not well understood. Here, we have employed a variety of spectroscopic methods, computational modeling, and membrane reconstitution to study the molecular interactions of natamycin underlying its antifungal activity. We find that natamycin forms aggregates in an aqueous solution with strongly altered optical properties compared to monomeric natamycin. Interaction of natamycin with model membranes results in a concentration-dependent fluorescence increase which is more pronounced for ergosterol- compared to cholesterol-containing membranes up to 20 mol% sterol. Evidence for formation of specific ergosterol-natamycin complexes in the bilayer is provided. Using nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy, we find that natamycin sequesters sterols, thereby interfering with their well-known ability to order acyl chains in lipid bilayers. This effect is more pronounced for membranes containing the sterol of fungi, ergosterol, compared to those containing mammalian cholesterol. Natamycin interferes with ergosterol-dependent transport of lysine by the yeast transporter Lyp1, which we propose to be due to the sequestering of ergosterol, a mechanism that also affects other plasma membrane proteins. Our results provide a mechanistic explanation for the selective antifungal activity of natamycin, which can set the stage for rational design of novel polyenes in the future.  相似文献   

10.
Polyene--sterol interaction and selective toxicity   总被引:3,自引:0,他引:3  
C M Gary-Bobo 《Biochimie》1989,71(1):37-47
From permeability experiments carried out with series of amphotericin B derivatives in both biological and model membranes, it was concluded that derivatives, whose carboxyl group at the C18 position is blocked by substitution, are much more efficient at inducing permeability in ergosterol-containing than in cholesterol-containing membranes, whereas derivatives whose carboxyl group is free and ionizable are equally efficient in both membranes types. Binding measurements on erythrocyte membranes showed that all amphotericin B derivatives simply partition between membrane lipids and aqueous medium, according to their lipid solubility. There is no relationship between binding and efficiency in inducing permeability. Permeability studies carried out on lipidic vesicles containing various sterols showed that: 1) derivatives having their carboxyl free induced permeability of the 'channel' type, regardless of the sterol present, and no detectable permeability in sterol-free membranes; 2) derivatives whose carboxyl group is blocked induce channels only in membranes containing ergosterol or sterols having an alkyl side chain identical to that of ergosterol. In the presence of other sterols or in sterol-free membranes, their ionophoric activity is poor and always of the 'mobile-carrier' type. A model of polyene-sterol interaction is proposed, accounting for the data obtained with both biological and model membranes.  相似文献   

11.
The selectivity of the antibiotic nystatin towards ergosterol compared to cholesterol is believed to be a crucial factor in its specificity for fungi. In order to define the structural features of sterols that control this effect, nystatin interaction with ergosterol-, cholesterol-, brassicasterol- and 7-dehydrocholesterol-containing palmitoyloleoylphosphocholine vesicles was studied by fluorescence spectroscopy. Variations in sterol structure were correlated with their effect on nystatin photophysical and activity properties. Substitution of cholesterol by either 7-dehydrocholesterol or brassicasterol enhance nystatin ability to dissipate a transmembrane K+ gradient, showing that the presence of additional double bonds in these sterols-carbon C7 and C22, plus an additional methyl group on C-24, respectively-as compared to cholesterol, is fundamental for nystatin-sterol interaction. However, both modifications of the cholesterol molecule, like in the fungal sterol ergosterol, are critical for the formation of very compact nystatin oligomers in the lipid bilayer that present a long mean fluorescence lifetime and induce a very fast transmembrane dissipation. These observations are relevant to the molecular mechanism underlying the high selectivity presented by nystatin towards fungal cells (with ergosterol) as compared to mammalian cells (with cholesterol).  相似文献   

12.
Lipid bilayer membranes composed of DOPC, DPPC, and a series of sterols demix into coexisting liquid phases below a miscibility transition temperature. We use fluorescence microscopy to directly observe phase transitions in vesicles of 1:1:1 DOPC/DPPC/sterol within giant unilamellar vesicles. We show that vesicles containing the "promoter" sterols cholesterol, ergosterol, 25-hydroxycholesterol, epicholesterol, or dihydrocholesterol demix into coexisting liquid phases as temperature is lowered through the miscibility transition. In contrast, vesicles containing the "inhibitor" sterols androstenolone, coprostanol, cholestenone, or cholestane form coexisting gel (solid) and liquid phases. Vesicles containing lanosterol, a sterol found in the cholesterol and ergosterol synthesis pathways, do not exhibit coexisting phases over a wide range of temperatures and compositions. Although more detailed phase diagrams and precise distinctions between gel and liquid phases are required to fully define the phase behavior of these sterols in vesicles, we find that our classifications of promoter and inhibitor sterols are consistent with previous designations based on fluorescence quenching and detergent resistance. We find no trend in the liquid-liquid or gel-liquid transition temperatures of membranes with promoter or inhibitor sterols and measure the surface fraction of coexisting phases. We find that the vesicle phase behavior is related to the structure of the sterols. Promoter sterols have flat, fused rings, a hydroxyl headgroup, an alkyl tail, and a small molecular area, which are all attributes of "membrane active" sterols.  相似文献   

13.
The influence of structural modifications in sterols and phospholipids on the rate of polyene antibiotic-sterol interaction was studied. For filipin and amphotericin B association with sterols in vesicles, a preferential interaction was found with sterols whose side chain length is close to that of cholesterol. Introduction of trans double bonds into the sterol side chain did not alter the rate of interaction in vesicles. The delta 7-bond of the sterol appears to be of critical importance in amphotericin B-sterol interaction, whereas the delta 5-bond is not essential. These observations are relevant to the well-known effects of amphotericin B on cell membranes containing ergosterol compared with those containing cholesterol. The dependence of the rates of sterol-polyene antibiotic interaction on the phospholipid composition of the vesicles indicates that phospholipid vesicles may be an inadequate model for reaching a comprehensive understanding of the effects exerted on biological membranes by these agents.  相似文献   

14.
Abstract

Amphotericin B (AmB) is the drug of choice for the treatment of systemic fungal infections, but its use is hampered by its severe side-effects. A better understanding of its mechanisms of action is needed to develop new AmB formulations with an optimal selectivity between fungal and mammalian cells. Interactions between AmB and cells depend on the concentration of the drug. Stimulatory effects, modulation of the activity of immunocompetent cells and inhibition of yeast adherence are early events that precede the actual cellular toxicity. If membrane permeability alterations are considered to be the first toxic step, cell death results not only from osmotic imbalances, but also from additional mechanisms, such as lipid peroxidation, inhibition of membrane enzymes and blockade of endocytosis. The selectivity between fungal and mammalian cells takes its origin from the difference in the nature of the membrane sterol: ergosterol in fungi, cholesterol in mammalian cells. Transmembrane pores result from different mechanisms according to the sterol: ergosterol-AmB complexes are formed from monomelic AmB in solution, which is the only form present in aqueous medium at low AmB concentrations, whereas pores in the cholesterol containing membrane result from the adsorption onto the membrane surface of aqueous self-associated AmB, that appears in medium when AmB concentration increases. The liposomes seem to sequester AmB in a manner which makes it unavailable for mammalian cells, but maintains its access to fungal cells. The transfer of AmB by progressive diffusion of free AmB through the aqueous phase could explain the enhancement of the therapeutic index of the drug by liposomes, since the induction of pore formation needs a higher threshold of drug for host cell than for fungal cell membranes. The closed structure of the vehicle is not required to enhance the selectivity of the drug: esters of sucrose or high concentration of sodium deoxycholate afford a protective effect as well. Macrophages, after phagocytosis of liposomal AmB, may be considered as a reservoir of AmB, from which the drug is progressively released. Finally, the strong binding of AmB to the delivery system reduces the amount of drug bound to serum components and thus the endocytosis of AmB through the LDL receptor, resulting in lower toxicity.  相似文献   

15.
Amphotericin B (AmB) is a potent antifungal agent used to treat patients with systemic mycoses. The cytotoxicity of AmB is related to its binding to membrane sterols and its clinical usefulness is based on its greater affinity to ergosterol, the fungal sterol, compared to the mammalian cell sterol, cholesterol (1-3). Here we report that sucrose monolaurate (L.S.) decreased the binding of AmB to cholesterol without interfering with its binding to ergosterol. Furthermore, the toxicity of AmB for mouse erythrocytes (RBC) and cultured mouse fibroblasts, L-929, cells was significantly decreased by low concentrations of L.S., whereas under the same conditions, its toxicity for Candida albicans was unaffected. We observed a very good correlation between the spectroscopic and cell studies. The results reported here on the effects of L.S. on the selectivity of AmB toxicity for fungal cells compared to animal cells and the relative nontoxic nature of sugar esters suggest a potential for compounds of this type to enhance the therapeutic index of AmB.  相似文献   

16.
The selectivity of the antibiotic nystatin towards ergosterol compared to cholesterol is believed to be a crucial factor in its specificity for fungi. In order to define the structural features of sterols that control this effect, nystatin interaction with ergosterol-, cholesterol-, brassicasterol- and 7-dehydrocholesterol-containing palmitoyloleoylphosphocholine vesicles was studied by fluorescence spectroscopy. Variations in sterol structure were correlated with their effect on nystatin photophysical and activity properties. Substitution of cholesterol by either 7-dehydrocholesterol or brassicasterol enhance nystatin ability to dissipate a transmembrane K+ gradient, showing that the presence of additional double bonds in these sterols-carbon C7 and C22, plus an additional methyl group on C-24, respectively-as compared to cholesterol, is fundamental for nystatin-sterol interaction. However, both modifications of the cholesterol molecule, like in the fungal sterol ergosterol, are critical for the formation of very compact nystatin oligomers in the lipid bilayer that present a long mean fluorescence lifetime and induce a very fast transmembrane dissipation. These observations are relevant to the molecular mechanism underlying the high selectivity presented by nystatin towards fungal cells (with ergosterol) as compared to mammalian cells (with cholesterol).  相似文献   

17.
Competition studies between cholesterol and ergosterol were carried out to gain insight into the binding interactions between nystatin and these sterols. Lipid vesicles were prepared with mixtures of palmitoyloleoylphosphocholine/ergosterol/cholesterol, and both sterol molar ratio and total content were varied. The inhibitory effect of cholesterol toward the ergosterol ability to induce the formation of long-lived fluorescent antibiotic species was used to detect nystatin-cholesterol interactions. It was found that the key factor controlling nystatin photophysical properties in the ternary lipid mixtures was their ergosterol/cholesterol molar ratio and not their overall sterol content. Moreover, permeabilization studies showed that nystatin was able to form pores in all the mixed vesicles, but the initial rate of pore formation was also dependent on the ergosterol/cholesterol molar ratio. Our data show that ergosterol is displaced by competing cholesterol, indirectly confirming cholesterol's ability to coassemble with nystatin. The distinct spectroscopic properties emphasize the different molecular architecture adopted by nystatin-cholesterol and -ergosterol complexes, and therefore are relevant to understanding the interaction of the antibiotic with membranes.  相似文献   

18.
The action of antifungal drug, amphotericin B (AmB), on solvent-containing planar lipid bilayers made of sterols (cholesterol, ergosterol) and synthetic C14–C18 tail phospholipids (PCs) or egg PC has been investigated in a voltage-clamp mode. Within the range of PCs tested, a similar increase was achieved in the lifetime of one-sided AmB channels in cholesterol- and ergosterol-containing membranes with the C16 tail PC, DPhPC at sterol/DPhPC molar ratio ≤1. The AmB channel lifetimes decreased only at sterol/DPhPC molar ratio >1 that occurred with sterol/PC molar ratio of target cell membranes at a pathological state. These data obtained on bilayer membranes two times thicker than one-sided AmB channel length are consistent with the accepted AmB pore-forming mechanism, which is associated with membrane thinning around AmB–sterol complex in the lipid rafts. Our results show that AmB can create cytotoxic (long open) channels in cholesterol membrane with C14–C16 tail PCs and nontoxic (short open) channels with C17–C18 tail PCs as the lifetime of one-sided AmB channel depends on ~2–5 Å difference in the thickness of sterol-containing C16 and C18 tail PC membranes. The reduction in toxic AmB channels efficacy can be required at the drug administration because C16 tails in native membrane PCs occur almost as often as C18 tails. The comparative analysis of AmB channel blocking by tetraethylammonium chloride, tetramethylammonium chloride and thiazole derivative of vitamin B1, 3-decyloxycarbonylmethyl-4-methyl-5-(2-hydroxyethyl) thiazole chloride (DMHT), has proved that DMHT is a comparable substitute for both tetraalkylammonia that exhibits a much higher affinity.  相似文献   

19.
Sterol structure influences liquid ordered domains in membranes, and the dependence of biological functions on sterol structure can help identify processes dependent on ordered domains. In this study we compared the effect of sterol structure on ordered domain formation in symmetric vesicles composed of mixtures of sphingomyelin, 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol, and in asymmetric vesicles in which sphingomyelin was introduced into the outer leaflet of vesicles composed of DOPC and cholesterol. In most cases, sterol behavior was similar in symmetric and asymmetric vesicles, with ordered domains most strongly stabilized by 7-dehydrocholesterol (7DHC) and cholesterol, stabilized to a moderate degree by lanosterol, epicholesterol and desmosterol, and very little if at all by 4-cholesten-3-one. However, in asymmetric vesicles desmosterol stabilized ordered domain almost as well as cholesterol, and to a much greater degree than epicholesterol, so that the ability to support ordered domains decreased in the order 7-DHC > cholesterol > desmosterol > lanosterol > epicholesterol > 4-cholesten-3-one. This contrasts with values for intermediate stabilizing sterols in symmetric vesicles in which the ranking was cholesterol > lanosterol ~ desmosterol ~ epicholesterol or prior studies in which the ranking was cholesterol ~ epicholesterol > lanosterol ~ desmosterol. The reasons for these differences are discussed. Based on these results, we re-evaluated our prior studies in cells and conclude that endocytosis levels and bacterial uptake are even more closely correlated with the ability of sterols to form ordered domains than previously thought, and do not necessarily require that a sterol have a 3β-OH group.  相似文献   

20.
Amphotericin B (AmB) is a well-known polyene macrolide antibiotic used to treat systemic fungal infections. AmB targets more efficiently fungal than animal membranes. However, there are only minor differences in the mode of action of AmB against both types of membranes, which is a source of AmB toxicity. In this work, we analyzed interactions of two low toxic derivatives of AmB (SAmE and PAmE), synthesized in our laboratory, with lipid membranes. Molecular dynamics simulations of the lipid bilayers containing ergosterol (fungal cells) or cholesterol (animal cells) and the studied antibiotic molecules were performed to compare the structural and dynamic properties of AmB derivatives and the parent drug inside the membrane. A number of differences was found for AmB and its derivatives' behavior in cholesterol- and ergosterol-containing membranes. We found that PAmE and SAmE can penetrate deeper into the hydrophobic region of the membrane compared to AmB. Modification of the amino and carboxyl group of AmB also resulted in the conformational transition within the antibiotic's polar head. Wobbling dynamics differentiation, depending on the sterol present, was discovered for the AmB derivatives. These differences may be interpreted as molecular factors responsible for the improved selectivity observed macroscopically for the studied AmB derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号