首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In crayfish, movement of the tailfan causes stimulation of exteroceptive sensory hairs located on its surface. Movement is monitored by a proprioceptor, the protopodite-endopodite chordotonal organ within the tailfan. Proprioceptive afferents provide indirect presynaptic inhibitory inputs to sensory hair afferents in the form of primary afferent depolarizations (PADs). Bath application of nitric oxide (NO) substrates, donors and scavengers, and nitric oxide synthase (NOS) inhibitors had no effect on the responses of proprioceptive afferents during imposed movements of the chordotonal organ. In contrast, the amplitude of PADs in exteroceptive hair afferents was dependent on NO levels. NO levels were altered by bath-application of the NO-precursor L-arginine, the NO donor SNAP, the NOS-inhibitor L-NAME, and the NO scavenger PTIO, while changes in PAD amplitude were measured. Application of L-arginine or SNAP resulted in consistent decreases in PAD amplitude, whereas L-NAME and PTIO induced increases in PAD amplitude. These results suggest that endogenous NO decreases inhibitory inputs to exteroceptive neurons, thus enhancing transmitter release at their output synapses.  相似文献   

2.
Nitric oxide (NO) mediates pathogenic changes in the brain subsequent to energy deprivation; yet the NO mechanism involved in the early events remains unclear. We examined the acute effects of severe hypoxia and oxygen-glucose deprivation (OGD) on the endogenous NO production and the NO-mediated pathways involved in the intracellular calcium ([Ca(2+)](i)) response in the rat hippocampal neurons. The levels of NO and [Ca(2+)](i) in the CA1 region of the slices rapidly elevated in hypoxia and were more prominent in OGD, measured by the electrochemical method and spectrofluorometry, respectively. The NO and [Ca(2+)](i) responses were enhanced by L-arginine and were reduced by NO synthase inhibitors, suggesting that the endogenous NO increases the [Ca(2+)](i) response to energy deprivation. Nickel and nifedipine significantly decreased the NO and [Ca(2+)](i) responses to hypoxia and OGD, indicating an involvement of L-type Ca(2+) channels in the NO-mediated mechanisms. In addition, the [Ca(2+)](i) responses were attenuated by ODQ or KT5823, inhibitors of the cGMP-PKG pathway, and by acivicin, an inhibitor of gamma-glutamyl transpeptidase for S-nitrosylation, and by the thiol-alkylating agent N-ethylmaleimide (NEM). Moreover, L-type Ca(2+) currents in cultured hippocampal neurons with whole-cell recording were significantly increased by L-arginine and were decreased by L-NAME. Pretreatment with NO synthase inhibitors or NEM but not ODQ abolished the effect of L-arginine on the Ca(2+) currents. Also, vitamin C, which decomposes nitrosothiol but not disulfide by reduction, reversed the change in the Ca(2+) current with L-arginine. Taken together, the results suggest that an elevated endogenous NO production enhances the influx of Ca(2+) via the hippocampal L-type Ca(2+) channel by S-nitrosylation during an initial phase of energy deprivation.  相似文献   

3.
Behavioral and pharmacological studies in insects have suggested that the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is involved in the formation of long-term memory (LTM) associated with olfactory learning. However, the target molecules of NO and the downstream signaling pathway are still not known. In this study, we investigated the action of NO on single voltage-dependent Ca2+ channels in the intrinsic neurons known as Kenyon cells within the mushroom body of the cricket brain, using the cell-attached configuration of the patch-clamp technique. Application of the NO donor S-nitrosoglutathione (GSNO) increased the open probability (NPO) of single Ca2+ channel currents. This GSNO-induced increase was blocked by ODQ, a soluble guanylate cyclase (sGC) inhibitor, suggesting that the NO generated by GSNO acts via sGC to raise cGMP levels. The membrane-permeable cGMP analog 8-Bro-cGMP also increased the NPO of single Ca2+ channel currents. Pretreatment of cells with KT5823, a protein kinase G blocker, abolished the excitatory effect of GSNO. These results suggest that NO augments the activity of single Ca2+ channels via the cGMP/PKG signaling pathway. To gain insight into the physiological role of NO, we examined the effect of GSNO on action potentials of Kenyon cells under current-clamp conditions. Application of GSNO increased the frequency of action potentials elicited by depolarizing current injections, indicating that NO acts as a modulator resulting in a stimulatory signal in Kenyon cells. We discuss the increased Ca2+ influx through these Ca2+ channels via the NO/cGMP signaling cascade in relation to the formation of olfactory LTM.  相似文献   

4.
Nitric oxide (NO) signaling repressively regulates metamorphosis in two solitary ascidians and a gastropod. We present evidence for a similar role in the sea urchin Lytechinus pictus. NO commonly signals via soluble guanylyl cyclase (sGC). Nitric oxide synthase (NOS) activity in some mammalian cells, including neurons, depends on the molecular chaperone heat shock protein 90 (HSP90); this may be so in echinoid larvae as well. Pluteus larvae containing juvenile rudiments were treated with either radicicol L- or D-nitroarginine-methyl-ester (L-NAME and D-NAME), or IH-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), inhibitors of HSP90, NOS, and sGC, respectively. In all instances, drug treatment significantly increased the frequency of metamorphosis. SNAP, a NO donor, suppressed the inductive properties of L-NAME and biofilm, a natural inducer of metamorphosis. NADPH diaphorase histochemistry indicated NOS activity in cells in the lower lip of the larval mouth, the preoral hood, the gut, and in the tube feet of the echinus rudiment. Histochemical staining coincided with NOS immunostaining. Microsurgical removal of the oral hood or the pre-oral hood did not induce metamorphosis, but larvae lacking these structures retained the capacity to metamorphose in response to ODQ. We propose that the production of NO repressively regulates the initiation of metamorphosis and that a sensory response to environmental cues reduces the production of NO, and consequently cGMP, to initiate metamorphosis.  相似文献   

5.
Calcium/calmodulin protein kinase (CaMK)-dependent nitric oxide (NO) and the downstream intracellular messenger cGMP, which is activated by soluble guanylate cyclase (sGC), are believed to induce long-term changes in efficacy of synapses through the activation of protein kinase G (PKG). The aim of this study was to examine the involvement of the CaMKII-dependent NO/sGC/PKG pathway in a novel form of repetitive stimulation-induced spinal reflex potentiation (SRP). A single-pulse test stimulation (TS; 1/30 Hz) on the afferent nerve evoked a single action potential, while repetitive stimulation (RS; 1 Hz) induced a long-lasting SRP that was abolished by a selective Ca(2+)/CaMKII inhibitor, autocamtide 2-related inhibitory peptide (AIP). Such an inhibitory effect was reversed by a relative excess of nitric oxide synthase (NOS) substrate, L-arginine. In addition, the RS-induced SRP was abolished by pretreatment with the NOS inhibitor, N(G)-nitro-L-arginine-methyl ester (L-NAME). The sGC activator, protoporphyrin IX (PPIX), reversed the blocking effect caused by L-NAME. On the other hand, a sGC blocker, 1H-[1, 2, 4]oxadiazolo[4, 3-alpha]quinoxalin-1-one (ODQ), abolished the RS-induced SRP. Intrathecal applications of the membrane-permeable cGMP analog, 8-bromoguanosine 3',5'-cyclic monophosphate sodium salt monohydrate (8-Br-cGMP), reversed the blocking effect on the RS-induced SRP elicited by the ODQ. Our findings suggest that a CaMKII-dependent NO/sGC/PKG pathway is involved in the RS-induced SRP, which has pathological relevance to hyperalgesia and allodynia.  相似文献   

6.
We have analyzed the action of nitric oxide on the synaptic inputs of spiking local interneurons that form part of the local circuits in the terminal abdominal ganglion of the crayfish, Pacifastacus leniusculus. Increasing the availability of NO in the ganglion by bath applying the NO donor SNAP, or the substrate for its synthesis, L-arginine, caused a depression of synaptic inputs onto the interneurons evoked by electrically stimulating mechanosensory neurons in nerve 2 of the terminal ganglion. Conversely, reducing the availability of NO by bath application of an NO scavenger, PTIO, and an inhibitor of nitric oxide synthase, L-NAME, increased the amplitude of the evoked potentials. These results suggest that elevated NO concentration causes a depression of the synaptic inputs to spiking local interneurons. To determine whether these effects could be mediated through an NO/cGMP signaling pathway we bath applied a membrane permeable analogue of cGMP, 8-br-cGMP, which decreased the amplitude of the inputs to the interneurons. Bath application of an inhibitor of soluble guanlylyl cyclase, ODQ, produced an increase in the amplitude of the synaptic inputs. Our results suggest that NO causes a depression of synaptic inputs to spiking local interneurons probably by acting through an NO/cGMP signaling pathway. Moreover, application of NO scavengers modulates the inputs to these interneurons, suggesting that NO is continuously providing a powerful and dynamic means of modulating the outputs of local circuits.  相似文献   

7.
Cricket brains were incubated in a saline containing nitric oxide (NO)-donor and phosphodiesterase inhibitor IBMX, which could activate soluble guanylate cyclase (sGC) to increase cGMP levels in the targets of NO. The increase of cGMP was detected by immunohistochemistry and enzyme linked immunosorbent assay. NO-induced cGMP immunohistochemistry revealed that many cell bodies of cricket brain showed cGMP immunoreactivity when preparations were treated with a saline containing 10 mM NO-donor SNP and phosphodiesterase inhibitor IBMX, but only a few cell bodies showed immunoreactivity when preparations were incubated without NO-donor. The concentration of cGMP in cricket brains were then measured by using cGMP-specific enzyme linked immunosorbent assay. Cricket brains were treated with a saline containing 1 microM of NO-donor NOR3 and 1 mM IBMX. The cGMP levels in the brain were increased about 75% compared to control preparations that was treated with a cricket saline containing IBMX. The level of cGMP decreased about 40% when preparations were incubated NOR3 saline containing sGC inhibitor ODQ. These results indicate that NO activates sGC and increases the levels of cGMP in particular neurons of the cricket brain and that the level of cGMP would be kept a particular level, which might regulate synaptic efficacy in the neurotransmission.  相似文献   

8.
The effects of direct application of acetylcholine (ACh) and m- and n-cholinoreceptor blockers on test cells were investigated in waking cats having developed instrumental lever-pressing conditioned reflex. Changes were recorded in both spontaneous and invoked firing activity in a functionally homogeneous group of motor cortex cells, in which increased discharge rate usually preceded the start of conditioned reflex movements. It was found, however, that ACh increased spontaneous activity considerably in some of the neurons tested and reduced it moderately in others. Atropine sharply reduced background activity in cortical neurons while preserving spike response to presentation of a conditioned stimulus and n-cholino-blockers such as hexonium and (occasionally) tubocurarine inhibited spike response produced by conditioned stimuli; background activity was slightly inhibited by hexonium and reinforced by tubocurarine. It was concluded that ACh put out by cholinergic fibers helps to maintain background firing activity level in cortical neurons under naturally occurring conditions, acting via m-cholinoreceptors, whereas factors influencing generation of spike discharges associated with performance of conditioned reflex movements are mediated by n-cholinoreceptors.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 5, pp. 579–589, September–October, 1989.  相似文献   

9.
Interleukin 6 (IL-6) and nitric oxide (NO) are important mediators of the inflammatory response. We report that in human peripheral blood mononuclear cells (PBMCs), NO exerts a biphasic effect on the expression of IL-6. Using sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO) as NO-donating compounds, we observed that both mRNA and protein levels of IL-6 increased at lower (≤10μM) and decreased at higher (>100μM) concentrations of NO donors. Changes in the expression of IL-6 correlated with changes in the activity of NF-κB, which increased at lower and decreased at higher concentrations of both NO donors as shown by the electrophoretic mobility shift assay (EMSA). The effects of NO on NF-κB activity were cGMP-dependent because they were reversed in the presence of ODQ, the inhibitor of soluble guanylyl cyclase (sGC), and KT5823, the inhibitor of cGMP-dependent protein kinase (PKG). Moreover, the membrane permeable analog of cGMP (8-Br-cGMP) mimicked the effect of the NO donors. These observations show that NO, depending on its concentration, may act in human PBMCs as a stimulator of IL-6 expression involving the sGC/cGMP/PKG pathway.  相似文献   

10.
Nitric oxide (NO), a gaseous messenger, has been reported to be involved in a variety of functions in the nervous system, ranging from neuronal pathfinding to learning and memory. We have shown previously that the application of NO via NO donors to growth cones of identified Helisoma buccal neurons B5 in vitro induces an increase in filopodial length, a decrease in filopodial number, and a slowing in neurite advance. It is unclear, however, whether NO released from a physiological source would affect growth cone dynamics. Here we used cell bodies of identified neurons known to express the NO synthesizing enzyme nitric oxide synthase (NOS) as a source of constitutive NO production and tested their effect on growth cones of other cells in a sender-receiver paradigm. We showed that B5 cell bodies induced a rapid increase in filopodial length in NO-responsive growth cones, and that this effect was blocked by the NOS inhibitor 7-NI, suggesting that the effect was mediated by NO. Inhibition of soluble guanylyl cyclase (sGC) with ODQ blocked filopodial elongation induced by B5 somata, confirming that NO acted via sGC. We also demonstrate that the effect of NO was reversible and that a cell releasing NO can affect growth cones over a distance of at least 100 microm. Our results suggest that NO released from a physiological source can affect the motility of nearby growth cones and thus should be considered a signaling molecule with the potential to affect the outcome of neuronal pathfinding in vivo.  相似文献   

11.
Soluble guanylate cyclase (sGC) is a receptor for endogenous and exogenous nitric oxide (NO) and is activated many fold upon its binding, making it a core enzyme in the nitric oxide signal transduction pathway. Much effort has been made to understand the link between binding of NO at the sGC heme and activation of the cyclase activity. We report here the first direct evidence for the role of conformational changes in transmitting the signal between the heme and cyclase domains. Using both circular dichroism (CD) and fluorescence spectroscopies, we have probed the effect that the sGC activators NO and 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl-indazole (YC-1) and the inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ) have on the structure of the protein. Surprisingly, binding of either ODQ or YC-1 to NO-bound sGC cause virtually identical changes in the far-UV CD spectra of sGC, reflecting a perturbation in the secondary structure of the enzyme. This change is absent upon binding of NO, YC-1 or ODQ alone. Using this and previous data, we propose a working model for the mechanism of activation of sGC by NO and YC-1 and inhibition by ODQ.  相似文献   

12.
Inappropriate signaling conditions within bone marrow stromal cells (BMSCs) can lead to loss of BMSC survival, contributing to the loss of a proper micro-environmental niche for hematopoietic stem cells (HSCs), ultimately causing bone marrow failure. In the present study, we investigated the novel role of endogenous atrial natriuretic peptide (ANP) and the nitric oxide (NO)/cGMP/protein kinase G type-Iα (PKG-Iα) signaling pathway in regulating BMSC survival and proliferation, using the OP9 BMSC cell line commonly used for facilitating the differentiation of HSCs. Using an ANP-receptor blocker, endogenously produced ANP was found to promote cell proliferation and prevent apoptosis. NO donor SNAP (S-nitroso-N-acetylpenicillamine) at low concentrations (10 and 50 μM), which would moderately stimulate PKG activity, protected these BMSCs against spontaneous apoptosis. YC-1, a soluble guanylyl cyclase (sGC) activator, decreased the levels of apoptosis, similar to the cytoprotective effects of low-level NO. ODQ (1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one), which blocks endogenous NO-induced activation of sGC and thus lowers endogenous cGMP/PKG activity, significantly elevated apoptotic levels by 2.5- and three-fold. Pre-incubation with 8-Bromo-cGMP or ANP, which bypass the ODQ block, almost completely prevented the ODQ-induced apoptosis. A highly-specific PKG inhibitor, DT-3, at 20, and 30 μM, caused 1.5- and two-fold increases in apoptosis, respectively. ODQ and DT-3 also decreased BMSCs proliferation and colony formation. Small Interfering RNA gene knockdown of PKG-Iα increased apoptosis and decreased proliferation in BMSCs. The data suggest that basal NO/cGMP/PKG-Iα activity and autocrine ANP/cGMP/PKG-Iα are necessary for preserving OP9 cell survival and promoting cell proliferation and migration.  相似文献   

13.
Although inhaled NO (iNO) therapy is often effective in treating infants with persistent pulmonary hypertension of the newborn (PPHN), up to 40% of patients fail to respond, which may be partly due to abnormal expression and function of soluble guanylate cyclase (sGC). To determine whether altered sGC expression or activity due to oxidized sGC contributes to high pulmonary vascular resistance (PVR) and poor NO responsiveness, we studied the effects of cinaciguat (BAY 58-2667), an sGC activator, on pulmonary artery smooth muscle cells (PASMC) from normal fetal sheep and sheep exposed to chronic intrauterine pulmonary hypertension (i.e., PPHN). We found increased sGC α(1)- and β(1)-subunit protein expression but lower basal cGMP levels in PPHN PASMC compared with normal PASMC. To determine the effects of cinaciguat and NO after sGC oxidation in vitro, we measured cGMP production by normal and PPHN PASMC treated with cinaciguat and the NO donor, sodium nitroprusside (SNP), before and after exposure to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, an sGC oxidizer), hyperoxia (fraction of inspired oxygen 0.50), or hydrogen peroxide (H(2)O(2)). After treatment with ODQ, SNP-induced cGMP generation was markedly reduced but the effects of cinaciguat were increased by 14- and 64-fold in PPHN fetal PASMC, respectively (P < 0.01 vs. controls). Hyperoxia or H(2)O(2) enhanced cGMP production by cinaciguat but not SNP in PASMC. To determine the hemodynamic effects of cinaciguat in vivo, we compared serial responses to cinaciguat and ACh in fetal lambs after ductus arteriosus ligation. In contrast with the impaired vasodilator response to ACh, cinaciguat-induced pulmonary vasodilation was significantly increased. After birth, cinaciguat caused a significantly greater fall in PVR than either 100% oxygen, iNO, or ACh. We conclude that cinaciguat causes more potent pulmonary vasodilation than iNO in experimental PPHN. We speculate that increased NO-insensitive sGC may contribute to the pathogenesis of PPHN, and cinaciguat may provide a novel treatment of severe pulmonary hypertension.  相似文献   

14.
In this study, we determined whether minocycline may protect rat cortical cultures against neurotoxicity induced by sphingomyelinase/ceramide and explored the underlying mechanisms. We found that minocycline exerted strong neuroprotective effects against toxicity induced by bacterial sphingomyelinase and synthetic C2 ceramide. Minocycline enhanced the production of nitric oxide (NO) with resultant increases in cellular cGMP content. Consistently, minocycline-dependent neuroprotection was abolished by the nitric oxide synthase inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) and the soluble guanylate cyclase (sGC) inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ). Western blotting revealed that minocycline restored the expression levels of cGMP-dependent protein kinase (PKG)-1, antioxidative thioredoxin-1, and antiapoptotic Bcl-2 that were down-regulated by bacterial sphingomyelinase. Accordingly, the PKG inhibitor KT5823, the thioredoxin reductase inhibitor 1-chloro-2,4-dinitrobenzene (DNCB), and a Bcl-2 inhibitor significantly abolished the minocycline neuroprotection. The minocycline-dependent restoration of Bcl-2 was abolished by L-NAME, ODQ, and KT5823, but not by DNCB, suggesting the involvement of NO/sGC/PKG but not thioredoxin. Furthermore, minocycline-dependent recovery of thioredoxin-1 was PKG-independent. Taken together, our results indicate that minocycline protects rat cortical neurons against bacterial sphingomyelinase/ceramide toxicity via an NO/cGMP/PKG pathway with induction of Bcl-2 and PKG-independent stimulation of thioredoxin-1.  相似文献   

15.
Peripheral autonomic neurones release nitric oxide (NO) upon nerve activation. However, the regulation of neuronal NO formation is poorly understood. We used the cyclic guanosine 3',5'-monophosphate (cGMP) analogue 8-Br-cGMP, the soluble guanylyl cyclase (sGC) stimulator YC-1, the phosphodiesterase inhibitor zaprinast and the sGC inhibitor ODQ to study whether the sGC/cGMP pathway is involved in regulation of neuronal NO release in nerve plexus-containing smooth muscle preparations from guinea pig colon. Electrical stimulation of the preparation evoked release of NO/NO(-)(2). In the presence of 8-Br-cGMP, YC-1 and zaprinast (all at 10(-4) M) the NO/NO(-)(2)-release increased to 152 +/- 16% (P < 0.05), 164 +/- 37% (P < 0.05) and 290 +/- 67% (P < 0.05) of controls, respectively. Conversely, ODQ (10(-5) M) decreased the evoked release of NO/NO(-)(2) to 49 +/- 7% (P < 0.05) of controls. Our data suggest that the sGC/cGMP pathway modulates NO release. Thus it is likely that NO exerts a positive feedback on its own release from peripheral autonomic neurones.  相似文献   

16.
Neurotoxic effects of ammonia are mediated by increased accumulation of nitric oxide (NO), which combines with free radicals to form a highly toxic compound, peroxynitrite. Previous experiments in vivo and in vitro have suggested that this phenomenon engages neuron-derived NO and is coupled to changes in the accumulation of cGMP. The present study accounted for the facts that: (i) astrocytes, not neurons are the morphological target of ammonia, and (ii) both NO-dependent, soluble (sGC) and NO-independent, particulate guanylate cyclase (pGC) mediate cGMP production in the cells. Neocortical rat astrocytes were treated for 1 or 24 h with 5 mM ammonium chloride ("ammonia") and then subjected to: (i) cGMP measurement, and (ii) mRNA and/or protein expression analysis of alpha1 and beta1 subunits of sGC and two pGC forms: pGC-A and pGC-B. Treatment with ammonia for 1h increased accumulation of cGMP and sGCbeta1 mRNA expression, without producing significant changes in the protein expression. This was followed by a decrease of cGMP level at 24 h treatment, associated with a decreased expression of sGCbeta1 and sGCalpha1 mRNA and sGCbeta1 protein. Expression of pGC-A and pGC-B mRNA was elevated in ammonia-treated astrocytes after 24 h. Accordingly, increased cGMP accumulation was noted in the presence of a specific sGC inhibitor (ODQ). The results show that ammonia affects cGMP production in astrocytes, and that this may involve not only sGC but also pGC.  相似文献   

17.
Exposure of rat pulmonary artery smooth muscle cells (rPASMC) to cytokines leads to nitric oxide (NO) production by NO synthase 2 (NOS2). NO stimulates cGMP synthesis by soluble guanylate cyclase (sGC), a heterodimer composed of alpha(1)- and beta(1)-subunits. Prolonged exposure of rPASMC to NO decreases sGC subunit mRNA and protein levels. The objective of this study was to determine whether levels of NO produced endogenously by NOS2 are sufficient to decrease sGC expression in rPASMC. Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) increased NOS2 mRNA levels and decreased sGC subunit mRNA levels. Exposure of rPASMC to IL-1beta and TNF-alpha for 24 h decreased sGC subunit protein levels and NO-stimulated sGC enzyme activity. L-N(6)-(1-iminoethyl)lysine (NOS2 inhibitor) or 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (sGC inhibitor) partially prevented the cytokine-mediated decrease in sGC subunit mRNA levels. However, cytokines also decreased sGC subunit mRNA levels in PASMC derived from NOS2-deficient mice. These results demonstrate that levels of NO and cGMP produced in cytokine-exposed PASMC are sufficient to decrease sGC subunit mRNA levels. In addition, cytokines can decrease sGC subunit mRNA levels via NO-independent mechanisms.  相似文献   

18.
The use of exogenous nitric oxide (NO) has been shown to alter the regulation of other endothelially derived mediators of vascular tone, such as endothelin-1 (ET-1). However, the interaction between NO and ET-1 appears to be complex and remains incompletely understood. One of the major actions of NO is the activation of soluble guanylate cyclase (sGC) with the subsequent generation of cGMP. Therefore, we undertook this study to test the hypothesis that NO regulates ET-1 production via the activation of the sGC/cGMP pathway. The results obtained indicated that the exposure of primary cultures of 4-wk-old ovine pulmonary arterial endothelial cells (4-wk PAECs) to the long-acting NO donor DETA NONOate induced both a dose- and time-dependent decrease in secreted ET-1. This decrease in ET-1 secretion occurred in the absence of changes in endothelin-converting enzyme-1 or sGC expression but in conjunction with a decrease in prepro-ET-1 mRNA. The changes in ET-1 release were inversely proportional to the cellular cGMP content. Furthermore, the NO-independent activator of sGC, YC-1, or treatment with a cGMP analog also produced significant decreases in ET-1 secretion. Conversely, pretreatment with the sGC inhibitor ODQ blocked the NO-induced decrease in ET-1. Therefore, we conclude that exposure of 4-wk PAECs to exogenous NO decreases secreted ET-1 resulting from the activation of sGC and increased cGMP generation.  相似文献   

19.
Vasorelaxation mediated by peroxynitrite (ONOO-) and 3-morpholinosydnonimine (SIN-1) were investigated in isolated bovine intramammary arteries. Both ONOO- and SIN-1 relaxed U 46619-precontracted rings in a dose-dependent, endothelium-independent manner. Pretreatment with an adenylyl cyclase inhibitor, SQ 22536 [(9-tetrahydro-2-furyl)adenine], resulted in an enhanced ONOO--mediated relaxation, but did not modulate the response to SIN-1. ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), a potent and selective inhibitor of soluble guanylyl cyclase (sGC), did not significantly affect relaxant actions of ONOO-, but ODQ markedly attenuated SIN-1-elicited relaxation with a rightward shift in the dose-response curve and an unaltered maximal response. In the presence of carboxy-PTIO (2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide), a putative nitric oxide scavenger and ONOO- inactivator, the relaxant response to ONOO- was abolished, while relaxant actions of SIN-1 appeared to be unaffected. The results reveal a difference between ONOO- and SIN-1-mediated relaxation with regards to the role of the sGC and suggest that ONOO--evoked relaxation may not be associated with sGC activity, but rather depends on an sGC-independent mechanism triggered by ONOO- and/or NO itself. It also re-emphasizes that SIN-1 induces a vasorelaxant response, in part, via stimulation of sGC.  相似文献   

20.
Pigment organelles in Xenopus laevis melanophores are used by the animal to change skin color, and they provide a good model for studying intracellular organelle transport. Movement of organelles and vesicles along the cytoskeleton is essential for many processes, such as axonal transport, endocytosis, and intercompartmental trafficking. Nitric oxide (NO) is a signaling molecule that plays a role in, among other things, relaxation of blood vessels, sperm motility, and polymerization of actin. Our study focused on the effect NO exerts on cytoskeleton-mediated transport, which has previously received little attention. We found that an inhibitor of NO synthesis, N-nitro-L-arginine methyl ester (L-NAME), reduced the melatonin-induced aggregation of the pigment organelles, melanosomes. Preaggregated melanosomes dispersed after treatment with L-NAME but not after exposure to the inactive stereoisomer (D-NAME) or the substrate for NO synthesis (L-arginine). Signal transduction by NO can be mediated through the activation of soluble guanylate cyclase (sGC), which leads to increased production of cGMP and activation of cGMP-dependent kinases (PKG). We found that both the sGC inhibitor 1H-(1,2,4) oxadiazolo(4,3-a)quinoxalin-1-one (ODQ) and the cGMP analogue 8-bromoguanosine 3':5'-cyclic monophosphate (8-Br-cGMP) reduced melanosome aggregation, whereas the PKG inhibitor KT582 did not. Our results demonstrate that melanosome aggregation depends on synthesis of NO, and NO deprivation causes dispersion. It seems, thus, as if NO and cGMP are essential and can regulate melanosome translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号